Dusty Star-Forming Galaxies Brightened by Dark Matter

The first galaxies were formed within the first billion years of the Universe’s history. Our Milky Way galaxy contains very old stars with ages indicating formation around 500 or 600 million years after the Big Bang.

Astronomers are very eager to study galaxies in the early universe, in order to understand galaxy formation and evolution. They can do this by looking at the most distant galaxies. With the expanding universe of the Big Bang, the farther away a galaxy is, the farther back in time we are looking. Astronomers often use redshift to measure the distance, and hence age, of a galaxy. The larger the redshift, z, the farther back in time, and the closer to a galaxy’s birth and the universe’s birth.

The interstellar medium of a galaxy consists of gas and dust. The gas can be hot or cold, and in atomic or molecular form. Atomic gas may be ionized by ultraviolet starlight, or X-radiation from neutron stars or black holes (not the black holes themselves, but hot matter near the black hole), from cosmic rays or from other astrophysical mechanisms. Our Milky Way galaxy is rich in gas and dust, and contains thousands of molecular clouds. These are very cold clouds composed mainly of molecular hydrogen but also many other molecular species. Molecular clouds are the primary sites of new star formation. The Horsehead Nebula is an example of a molecular cloud in the constellation of Orion.

"Hubble Sees a Horsehead of a Different Color" by ESA/Hubble. Licensed under CC BY 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Hubble_Sees_a_Horsehead_of_a_Different_Color.jpg#/media/File:Hubble_Sees_a_Horsehead_of_a_Different_Color.jpg

“Hubble Sees a Horsehead of a Different Color” by ESA/Hubble. Licensed under CC BY 3.0 via Wikimedia Commons 

During their most active phase of star formation, a large galaxy might give birth to over 1000 solar masses worth of stars per year. By comparison, in the Milky Way galaxy, the new star formation rate is only of order 1 solar mass per year, the equivalent of 1 Sun, or, say, 2 stars with half the mass of our Sun, per annum. Over its entire 13 billion year life the Milky Way has formed many hundreds of billions of stars, so clearly the star formation rate was higher in the past.

Before the first stars and galaxies form, the universe contains only hydrogen and helium, and no heavier elements. Those are produced by thermonuclear reactions in stellar interiors. This is a wonderful thing, because carbon, oxygen and other heavy elements are essential to life.

After a galaxy produces its first generation of massive stars, its interstellar medium will begin to contain carbon, nitrogen, oxygen and other heavy elements (heavy means anything above helium, in this context). Massive stars (above a few solar masses) evolve rapidly, with timescales in the millions of years, rather than billions, and explode as supernovae at the end of their lives. A large portion of their material, now containing heavy elements as well as hydrogen and helium, is expelled at high velocity and mixed into the interstellar medium. The carbon, nitrogen and oxygen which is then in the respective galaxy’s interstellar medium can be detected in atomic (including ionized) or molecular forms. The relative abundance of heavy elements grows with time as more stars are formed, evolve, and recycle matter into the interstellar medium.

High-redshift (z > 2) galaxies with active star formation are best observed in the infrared. The gas and dust in molecular clouds is quite cold, usually less than 100 K (100 degrees above absolute zero). And their radiation is shifted further toward the far infrared and sub-millimeter portions of the spectrum by the redshift factor of 1+z. So radiation emitted at 100 microns is detected at the Earth at 400 microns for a source at z = 3.

These are difficult measurements to make, because if the galaxy is very distant, it is also very faint. However the possibility of getting good measurements is helped by two things. One is that galaxies with very active star formation are intrinsically brighter.

And the other reason is that intervening clusters of galaxies are massive and contain mostly dark matter. As we look far back through the universe toward an early galaxy, there is a good chance that the line of sight passes through a cluster of galaxies. Clusters of galaxies contain hundreds or even thousands of galaxies, and are dominated by dark matter. Most of the infrared radiation can pass through the intracluster medium – the space between galaxies – without being absorbed; it does not interact with dark matter. The clusters are sufficiently massive to bend the light, however, according to general relativity. As the background galaxy’s light passes through the cluster during its multi-billion year journey to the Earth and our telescopes, the cluster’s gravitational potential modifies the light ray’s path. Actually the intervening cluster of galaxies does more than displace the light, it acts as a lens, causing the image to brighten by as much as 10 times or more. This makes it much easier to gather enough photons from the target galaxy to obtain good quality results.

An international research team with participants from Germany, the U.S., Chile, the U.K. and Canada has identified 20 high redshift “dusty star forming galaxies” at very high redshift (DSFG is a technical term for galaxies with high star formation rates and lots of dust) from the South Pole Telescope infrared galaxy survey. They have been able to further elucidate the nature of 17 of these early galaxies by measuring C II emission from singly ionized atomic carbon, and CO emission from carbon monoxide molecules for 11 of those. They have also determined the total far infrared luminosity for these target galaxies. Their results allow them to place constraints on the nature of the interstellar medium and the properties of molecular clouds.

The galaxies’ high redshifts, ranging from z = 2.1  to 5.7, actually makes it possible to make Earth-bound measurements in most cases. At lower redshifts the observations would not be possible from Earth because the Earth’s atmosphere is highly opaque at the observation frequencies. But it is much more transparent at longer wavelengths, so as the redshift exceeds z = 3, Earth-based observations are possible from favorable locations, in this case the Chilean desert. For three sources with redshifts around 2 the atmosphere prohibits ground-based observations and the team therefore made observations from the orbiting Herschel Space Telescope, designed for infrared work.

The figure labelled Figure 3 below is taken from their paper. It indicates the redshift z on the x-axis (logarithmically) and the far infrared luminosity of the galaxy on the y-axis (as the log) as well. The 17 galaxies studied by the authors are indicated with red dots and labelled “SPT DSFGs”. Their very high luminosities are in the range of 10 to 100 trillion times the Sun’s luminosity. Note that the luminosities must be very high for detection at such a high redshift (distance from Earth). Also these luminosities are uncorrected for the lensing magnification, so the true luminosities are around an order of magnitude lower.


The redshift range covered in this research corresponds to ages for the universe of around 1 billion years old (z = 5.7) to a little over 3 billion years old (z = 2.1). So the lookback time is roughly 11 to 13 billion years.

For those of us interested in dark matter, their findings regarding the degree of magnification by dark matter are also interesting. They find “strong lensing” or magnification in the range of 5 to 21 times for 4 sources that allowed for lens modeling. The other sources do not have magnifications measured, but they are presumed to be of the same order of magnitude of around 10 times or so, to within a factor of 2 either way.

It is only because the lensing is so substantial that they are able to measure these galaxies with sufficient fidelity to arrive at their results. So not only is dark matter key to galaxy formation and evolution, it is key to allowing us to study galaxies in the early universe. Dark matter forms galaxies and then helps us understand how they form!


B. Gullberg et al. 2015, ”The nature of the [CII] emission in dusty star-forming galaxies from the SPT survey” to be published, Monthly Notices of the Royal Astronomical Society, http://arxiv.org/pdf/1501.06909v2.pdf

C.M. Casey, D. Narayanan, A. Cooray 2015, “Dusty Star-Forming Galaxies at High Redshift”, http://arxiv.org/abs/1402.1456

Dark Globular Clusters

Globular clusters are highly compact star clusters containing hundreds of thousands or even millions of old stars. The stars found in a globular cluster can be up to almost 13 billion years old, and thus act as good tracers of the early history of our Milky Way Galaxy, or of other galaxies in which they are found.

Our Galaxy has about 150 or so globular clusters, and our neighbor the Andromeda Galaxy has over 500. Because they are so compact, they are tightly gravitationally bound, and tend to be very spherical, hence the description as globular. They also orbit our Galaxy in the halo and in various directions; they are not confined to the disk where most of the other stars of the Milky Way are found. This suggests a history for globulars (as they are also called) that predates the formation of the Milky Way’s disk and spiral arms. Many globulars may be remnants of dwarf galaxies that have been pulled into the Milky Way during its long lifetime, or have been captured by the Milky Way as it consumed another, smaller galaxy in its vicinity.


M13 globular cluster

The large majority of globular clusters are thought to contain little dark matter. They contain no dust or gas, their matter appears to be all in stars. Astronomers are able to measure the mass of globulars by determining how fast stars are moving around in the core, and by measuring the size of the globulars. Assuming the globulars are gravitationally relaxed, which most appear to be, then the mass within a certain radius is proportional to the radius and the square of the velocities of stars relative to the globular’s center and within that radius. Some assumptions need to be made about the falloff of matter density, and projection effects corrected, but these can be calculated and compared with observations to provide a self-consistent model.

Going through these steps, and also measuring the absolute brightness of the globular (which requires a distance measurement) allows something called a mass-to-light ratio for the globular to be determined. This is stated in terms of solar units, i.e., using the mass in relation to the Sun’s mass and the absolute brightness in relation to the Sun’s luminosity.

Typical mass-to-light ratios for most globulars are of order unity, say 1 or 2 or 3. This indicates little dark matter is present (we know the dark matter content of ordinary stars such as the Sun is low).

But now some possible dark matter-containing globular clusters have been found. To be more precise, some globular clusters with quite high mass-to-light ratios have been found around Centaurus A.


Centaurus A galaxy and globular clusters observed by the Very Large Telescope (ESO)

Centaurus A is a peculiar galaxy about 10 million light-years or so away, and is the fifth brightest galaxy in the sky by apparent magnitude. It is classified as a giant elliptical, or lenticular, galaxy with peculiar characteristics. It has a very prominent dust lane through the center as seen in the photograph above, and also possesses a large relativistic jet visible at radio and X-ray wavelengths. There is a black hole at the center of Centaurus A with a mass of over 50 million solar masses. Centaurus A may have as many as 2000 globular clusters.

A study of 125 of the brighter globular clusters in the Centaurus A galaxy, by Matthew Taylor and co-authors, was made at the European Southern Observatory’s Very Large Telescope in Chile. The locations of the globulars are indicated in the green, blue and red circles superimposed on Centaurus A’s image. A certain fraction of the globulars with masses above a million solar masses showed the characteristic that the mass-to-light ratio was abnormally high, and becomes higher nearly in proportion to the mass of the globular. This set of globulars is denoted in red circles in the image. The most massive of the red circle globulars have the highest mass-to-light ratios.

The authors find, quoting from their paper, “a distinct group of objects which require significant dark gravitating components such as central massive black holes and/or exotically concentrated dark matter distributions.” These objects have mass-to-light ratios above 6, and half a dozen have mass-to-light ratios over 15, including one object with a very high ratio of 67.

Several explanations are proposed. One is rotation of the globulars in question, but the authors are able to rule this explanation out since the stability of the cluster would be destroyed. Another is massive black holes in the centers of these globulars. This would require black holes with masses in the range 40,000 to over 1 million solar masses, and would be quite an exciting finding in its own right. There is evidence for intermediate mass black holes in a few other globular clusters found in the Milky Way and other galaxies. An additional possibility is the accumulation of many smaller stellar-sized black holes and/or neutron stars in the center of the cluster that would modify the cluster’s dynamical properties.

Yet another possibility is the presence of significant dark matter. If verified there would be important implications for globular cluster formation histories. This study should lead to a rush for other observations to ferret out high mass-to-light ratio globular clusters and to allow astronomers to distinguish between the black hole, dark stellar remnant, and dark matter possible scenarios.

Already there is a Wikipedia entry for “dark globular clusters”.



http://www.eso.org/public/archives/releases/sciencepapers/eso1519/eso1519a.pdf, submitted to the Astrophysical Journal

Blue Tides and the Milky Way

I recently wrote about the  largest high-redshift cosmological simulation of galaxy formation ever, which has been recently completed by a group of astrophysicists in the U.S. and the U.K. This tour-de-force simulation, named BlueTides, was performed on the Blue Waters Cray XE supercomputer at NCSA and employed 648,000 cores. The researchers utilized approximately 700 billion particles (!) to represent dark matter and ordinary matter and to create galaxies inside the supercomputer.

You can find the full article describing the simulation at insidehpc.com.

Galaxies are the fundamental building blocks of the large scale structure of the universe. Very early on, before the first galaxies formed, the universe was a highly uniform mix of dark matter and ordinary matter, but with about 5 times as much dark matter by mass relative to the ordinary matter (protons, neutrons, electrons) that makes up the visible parts of galaxies, including stars, gas and dust. Ares of higher dark matter density play a key role in gravitationally attracting ordinary matter that forms galaxies and stars.

When we think of the word galaxy we typically think of beautiful modern day spiral galaxies, such as the Andromeda Galaxy. Spiral galaxies are flattened, rotating disks; the spiral arms represent concentrations of matter and of star-forming regions. The most distant disk-shaped galaxies that have been detected are at redshifts of 2 to 3, so we are seeing them as they were when the universe was around 2 to 3 billion years old. (The higher the redshift the more distant the galaxy and also the farther back in time we are looking, toward the universe’s origin some 13.8 billion years ago).


Two spiral galaxies starting to collide. Image Credit: Debra Meloy Elmegreen (Vassar College) et al.,
& the Hubble Heritage Team (AURA/STScI/NASA)

The BlueTides simulation provides insight into what was going on when the universe was only around 1/2 a billion years old, with galaxy redshifts around 8 to 10. It does a good job of matching the limited observational data we have at such highredshifts, in particular the rest frame (before redshift) ultraviolet luminosities of the earliest detected galaxies from the Hubble Space Telescope surveys.

Their simulation finds that, among the most massive galaxies in their simulation, “a significant fraction are visually disk-like, and surprisingly regular in shape”. In other words, they appear to be the progenitors of present-day spiral galaxies. They find that, at a redshift of 8, a full 70% of their virtual galaxies with masses above 10 billion solar masses are classifiable as disks, since a majority of stellar orbits lie in the plane of the disk.


Simulated high-redshift galaxies from BlueTides – Figure 1 from Feng et al.

They also find that mergers are not of major significance in the build-up of these early massive galaxies. Rather it appears that they grew primarily by cold gas arriving from preferred directions, namely along filaments in the density distribution of the background gas. It is well known that the universe has a web-like or filamentary structure of high density regions interspersed with voids (relatively empty regions). This filamentary structure is believed on the basis of many simulations of the large-scale universe to have begun at an early date.

A future infrared satellite known as WFIRST will have a field of view 200 times larger than the Wide Field Camera on the Hubble. Also, its design for infrared radiation detection makes it appropriate for studying the light from high-redshift galaxies. The authors predict that a survey of 2000 square degrees with WFIRST should find roughly 8000 massive disk-type galaxies at redshifts above 8. Future very large ground-based telescopes will be able to make follow-up observations of galaxies discovered by WFIRST. Such observations will provide further insight into the nature of galaxy formation, including accretion of material from the background and the details of dark matter’s role in the process.


Feng et al. 2015, “The Formation of Milky Way-Mass Disk Galaxies in the First 500 Million Years of a Cold Dark Matter Universe” http://arxiv.org/abs/1504.06618

Forming the First Galaxies: Blue Tides on Blue Waters

The largest high-redshift cosmological simulation of galaxy formation ever has been recently completed by a group of astrophysicists from the U.S. and the U.K. This tour-de-force simulation was performed on the Blue Waters Cray XE/XK system at NCSA and employed 648,000 CPU cores. They utilized approximately 700 billion particles (!) to represent dark matter and ordinary matter and to create virtual galaxies inside the supercomputer. The authors, who represent Carnegie Mellon University, UC Berkeley, Princeton University, and the University of Sussex, have given their simulation the moniker BlueTides.

The astrophysicists simulated galaxy formation in a “box” 2 billion light-years on a side. At redshifts of  z = 8 to 10,  which is the maximum for which we have observed real galaxies, their simulation matches the data from the Hubble Space Telescope. And yes, dark matter plays a key role – it is the main gravitational sink that pulls in ordinary matter that forms the stars, gas, and dust that are the primary visible components of galaxies. Without dark matter, our Milky Way would be much smaller, and you probably wouldn’t be here. You can learn more about the BlueTides simulation results and methodology at insidehpc.com.

  Hubble Ultra Deep Field; STScI

The Supervoid

The largest known structure in the universe goes by the name of the Supervoid. It is an enormously large under-dense region about 1.8 billion light-years in extent. Voids (actually low density regions) in galaxy and cluster density have been mapped over several decades.

The cosmic microwave background radiation map from the Planck satellite and earlier experiments is extremely uniform. The temperature is about 2.7 Kelvins everywhere in the universe at present. There are small microKelvin scale fluctuations due to primordial density perturbations. The over-dense regions grow over cosmic timescales to become galaxies, groups and clusters of galaxies, and superclusters made of multiple clusters. Under-dense regions have fewer galaxies and groups per unit volume than the average.

The largest inhomogeneous region detected in the cosmic microwave background map is known as the Cold Spot and has a very slightly lower temperature by about 70 microKelvins (a microKelvin being only a millionth of a degree). It may be partly explained by a supervoid of radius 320 Megaparsecs, or around 1 billion light-years radius.

Superclusters heat cosmic microwave background photons slightly when they pass through, if there is significant dark energy in the universe. Supervoids cool the microwave background photons slightly. The reason is that, once dark energy becomes significant, during the second half of the universe’s expansion to date, it begins to smooth out superclusters and supervoids. It pushes the universe back towards greater uniformity while accelerating the overall expansion.

A photon will gain energy (blueshift) when it heads into a supercluster on its way to the Earth. This is an effect of general relativity. And as it leaves the other side of the supercluster as it continues its journey, it will lose energy (redshift) as it climbs out of the gravitational potential well. But while it is passing through the supercluster, that structure is spreading out due to the Big Bang overall expansion, and its gravitational potential is weakening. So the redshift or energy loss is smaller than the original energy gain or blueshift. So net-net, photons gain energy passing through a supercluster.

The opposite happens with a supervoid. Photons lose energy on the way in. They gain  energy on the way out, but less than they lost. Net-net photons lose energy, become colder, when passing through supervoids. Now all of this is relative to the overall redshift that all photons experience as they travel from the Big Bang last scattering surface to the Earth. During each period that the universe doubles in size, the Big Bang radiation doubles in wavelength, or halves in temperature.

In a newly published paper titled “Detection of a Supervoid aligned with the Cold Spot in the Cosmic Microwave Background”, astronomers looked at the distribution of galaxies in the direction of the well-established Cold Spot. The supervoid core redshift distance is in the range z = 0.15 to z = 0.25, corresponding to a distance of roughly 2 to 3 billion light-years from Earth.

They find a reduction in galaxy density of about 20%, and of dark matter around 14%, in the supervoid, relative to the overall average density values in the universe. The significance of the detection is high, around 5 standard deviations. The center of the low density region is well aligned with the position of the Cold Spot in the galactic Southern Hemisphere.

Both the existence of this supervoid and its alignment with the Cold Spot are highly significant. The chance of the two being closely aligned to this degree is calculated as just 1 chance in 20,000. The image below is Figure 2 from the authors’ paper and maps the density of galaxies in the left panel and the temperature differential of the microwave background radiation in the right panel. The white dot in the middle of each panel marks the center of the Cold Spot in the cosmic microwave background.


A lower density of galaxies is indicated by a blue color in the left panel. Red and orange colors denote a higher density of galaxies. The right panel shows slightly lower temperature of the cosmic microwave background in blue, and slightly higher temperature in red.

The authors have calculated the expected temperature reduction due to the supervoid; using a first-order model it is about 20 microKelvins. While this is not sufficient to explain the entire Cold Spot temperature decrease, it is a significant portion of the overall 70 microKelvin reduction.

Dark Energy is gradually smearing out the distinction between superclusters and supervoids. Dark Energy has come to dominate the universe’s mass-energy balance fairly recently, since about 5 billion years ago. If there is no change in the Dark Energy density, over many billions of years it will push all the galaxies so far apart from one another that no other galaxies will be detectable from our Milky Way.


I. Szapudi et al, 2015 M.N.R.A.S., Volume 450, Issue 1, p. 288, “Detection of a supervoid aligned with the cold spot of the cosmic microwave background” – http://mnras.oxfordjournals.org/content/450/1/288.full

S. Perrenod and M. Lesser, 1980, P.A.S.P. 91:764, “A Redshift Survey of a High-Multiplicity Supercluster” http://www.jstor.org/discover/10.2307/40677683?uid=2&uid=4&sid=21106121183081


X-raying Dark Matter

I was at the dentist this week. Don’t ask, but they took 3 digital X-Rays.

One of the most significant methods by which we detect the presence of dark matter is through the use of X-ray telescopes. The energy associated with these X-rays is typically around an order of magnitude less than those zapped into your mouth when you visit the dentist.

Around 50 years ago scientists at American Science and Engineering flew the first imaging X-ray telescope on a small rocket. At a later date, I worked part-time at AS&E, as we called it, while in graduate school. One major project was a solar X-Ray telescope mounted in SkyLab, America’s first space station. This gave me the wonderful opportunity to work in the control rooms at the NASA Johnson Space Center in Houston.

X-rays are absorbed in the Earth’s atmosphere, so today X-ray astronomy is performed from orbiting satellites. X-ray telescopes use the principle of grazing incidence reflection; the X-rays impinge at shallow angles onto gold or iridium-coated metallic surfaces and are reflected to the focal plane and the detector electronics.


Schematic of grazing incidence mirrors used in the Chandra X-ray Observatory. Credit NASA/CXC/SAO; obtained from chandra.harvard.edu.

How does dark matter result in X-rays being produced? Indirectly, as a consequence of its gravitational effects.

One of the main mechanisms for X-ray production in the universe is known as thermal bremsstrahlung. Bremsstrahlung is a German word meaning ‘decelerated radiation’. A gas which is hot enough to give off X-rays will be ionized. That is, the electrons will be stripped from the nuclei and move about freely. As electrons fly around near ions (protons and helium nuclei primarily) their mutual electromagnetic attraction will result in some of the electrons’ kinetic energy being transferred to radiation.

The speed at which the electrons are moving around determines how energetic the produced photons will be. We talk about the temperature of such an ionized gas, and that is proportional to the square of the average speed of the electrons. A gas with a temperature of 10 million degrees will give off approximately 1 kiloVolt X-rays (hereafter we use the KeV abbreviation), and a gas with a temperature of 100 million degrees will radiate 10 KeV X-rays. One eV converts to 11,605 degrees Kelvin (or we can just say Kelvins).


Chandra X-ray Observatory prior to launch in the Space Shuttle Columbia in 1999. NASA image.

So how can we produce gas hot enough to give off X-Rays by this mechanism? Gravity, and lots of it. The potential energy of the gravitational field is proportional to the amount of matter (total mass) coalesced into a region and inversely proportional to the characteristic scale of that region. GM/R, simple Newtonian mechanics, is sufficient; no general relativistic calculation is needed at this point. G is the gravitational constant and M and R are the cluster mass and characteristic radius, respectively.

A lot of mass in a confined region – how about large groups of clusters and galaxies? It turns out we need of order 1000 galaxies for a rich cluster and this will do the trick. But only because there is dark matter as well as ordinary matter. There are three main matter components to consider: galaxies, hot intracluster gas found between galaxies, and dark matter. The cluster forms from gravitational self-collapse from a region that was of above average density in the early universe. All the over dense regions are subject to collapse.


The “Bullet Cluster” is actually two colliding clusters. The bluish color shows the distribution of dark matter as determined from the gravitational lensing effect on background galaxy images. The reddish color depicts the hot X-ray emitting gas measured by the Chandra X-ray Observatory.

(X-ray: NASA/CXC/CfA/M.Markevitch Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe)

The optically visible galaxies are the least important contributor to the cluster mass, only around 1%! Galaxy clusters are made of dark matter much more than they are made out of galaxies. And secondarily, they are made out of hot gas. The ordinary matter contained within galaxies is only the third most important component. The table below gives the typical 90 / 9 / 1 proportions for dark matter, hot gas, and galaxies, respectively.

Three main components of a galaxy cluster (Table derived from Wikipedia article on galaxy clusters)

Component                      Mass fraction             Description

Galaxies                           1%                         Optical/infrared observations

Intergalactic gas              9%                         High temperature ionized gas – thermal bremsstrahlung

Dark matter                     90%                        Dominates, inferred through gravitational interactions

The intracluster gas has two sources. A major portion of it is primordial gas that never formed galaxies, but falls into the gravitational potential well of the cluster. As it falls in toward the cluster center, it heats. The kinetic energy of infall is converted to random motions of the ionized gas. An additional portion of the gas is recycled material expelled from galaxies. It mixes with the primordial gas and heats up as well through frictional processes. The gas is supported against further collapse by its own pressure as the density and temperature increase in the cluster core.

The temperature which characterizes the X-ray emission is a measure of gravitational potential strength and proportional to the ratio of the mass of the cluster to its size. Typical X-Ray temperatures measured for rich clusters are around 3 to 12 KeV, which corresponds to temperatures in the range of 30 to 130 million Kelvins.

There is another way to measure the strength of the cluster’s gravitational potential well. That is by measuring the speed of galaxies as they move around in somewhat random fashion inside the cluster. The assumption, which is valid for well-formed clusters after they have been around for billions of years, is that the galaxies are not just falling into the center of the cluster, but that their motions are “virialized”. This is the method used by Fritz Zwicky in the 1930s for the original discovery of dark matter. He found that in a certain well known cluster, the Coma cluster, that the average speed of galaxies relative to the cluster centroid was of order 1000 kilometers/sec, much higher than the expected 300 km/sec based on the visible light from the cluster galaxies. This implied 10 times as much dark matter as galactic matter. This early, rather crude measurement, was on the right track, but fell short of the actual ratio of dark matter to galactic matter since we now know that galaxies themselves have large dark matter halos. The X-ray emission from clusters was discovered much later, starting in the 1970s.

The two methods of measuring the amount of dark matter in Galaxy clusters generally agree. Both the galaxies and the hot intracluster gas are acting as tracers of the overall mass distribution, which is dominated by dark matter. Galaxy clusters play a major role in increasing our understanding of dark matter and how it affects the formation and evolution of galaxies.

In fact if dark matter was not 5 times as abundant by mass as ordinary matter, most galaxy clusters would never have formed, and galaxies such as our own Milk Way would be much smaller.


Wikipedia article “galaxy clusters”.

“X-ray Temperatures of Distant Clusters of Galaxies”, S. C. Perrenod,  J. P. Henry 1981, Astrophysical Journal, Letters to the Editor, vol. 247, p. L1-L4.

“The X-ray Luminosity – Velocity Dispersion Relation in the REFLEX Cluster Survey”, A. Ortiz-Gil, L. Guzzo, P. Schuecker, H. Boehringer, C.A. Collins 2004, Mon.Not.Roy.Astron.Soc. 348, 325; http://arxiv.org/abs/astro-ph/0311120v1

Multi-Billion Light-Year Map: Dark Energy Survey first results

Perhaps the most amazing map ever created by mankind has just been published by astronomers from the Dark Energy Survey collaboration. It’s either this map below or the latest Cosmic Microwave Background map from the Planck satellite. Personally, I find this new map of our “neighborhood” more exciting and esthetic, as it shows the explicit locations of several hundred clusters of galaxies together with the distribution of dark matter across a very large scale.

The Dark Energy Camera (DECam) is a 570 Megapixel system designed by the DES collaboration for deep galaxy survey work. It sits at the focal plane of the 4 meter Victor M. Blanco telescope at the National Optical Astronomy Observatory’s Cerro Tololo Inter-American Observatory in Chile. The Dark Energy Survey team will acquire data over a 5-year period. This is the first map released, based on a small percentage of the data that will ultimately be collected.

Over 2 million galaxies were observed with DECam to create this map, and a supercomputer was required to analyze the data and compare it to theoretical expectations for dark matter and galaxy distributions. The map shows the distribution of dark matter, clusters of galaxies, and matter filaments and voids in a field of 139 square degrees. That’s roughly 1/2 billion light-years or so in the horizontal direction and in the vertical direction. 

The redshifts, and thus distances, of the galaxies in the survey sample have been determined photometrically, by comparing the luminosity of a given galaxy in various wave bands in the optical and infrared regions of the spectrum. About 1 million of the galaxies in the survey are background galaxies with redshifts above 0.6, and another million plus are foreground galaxies with redshifts below 0.5. The higher the redshift, the more distant the galaxy, since the universe is expanding in a uniform fashion. The redshift measures the shift of light toward the red end of the spectrum as it is “stretched out” along with this expansion.

The light from background galaxies is distorted as it passes through concentrations of dark matter on its way to the Earth and the DECam. This is due to gravitational lensing, a consequence of Einstein’s general relativity. A background galaxy’s image will shear in proportion to the strength of the gravitational field its light encounters during its journey to the Earth. 

The amount of shear seen by each of the million or so background galaxies is used to infer the map of the distribution of dark matter at redshift 0.5 and below. This corresponds to a lookback time of up to 5 billion years. Coincidentally, the redshift of 0.5 is around the time when dark energy began to be more important than dark matter, and the expansion of the universe began to accelerate, rather than decelerate. 

The dots on the map are not individual galaxies; rather they are rich clusters of galaxies. Each  cluster is a gravitationally bound system, dominated by dark matter, and containing 100s to 1000s of galaxies. Typically the galaxies themselves contribute only about 1% of a cluster’s mass, and the dark matter can contribute up to 90% of the total. The remainder is found as hot X-ray emitting gas residing between galaxies, but still bound to the cluster due to the predominant gravitational potential contribution from the dark matter.

DES map of dark matter density

The red areas on the map represent the highest concentrations of dark matter, the orange and yellow areas the next highest, and the blue areas the lowest. These blue areas are called voids because of their low density of dark matter and clusters of galaxies. One clearly sees the existence of dark matter filamentary structures in the red, orange, yellow colors. 

Clusters of galaxies are represented by the gray dots, and the larger the dot, the “richer” or larger the cluster. It’s evident to the eye that the clusters are preferentially found in the same locations as the reddish areas and yellow filaments. They are scarcely to be found in the blue-colored voids. The point is that the ordinary matter, which is most concentrated in galaxy clusters, follows the dark matter density, as expected. 

Peruse the map, and let your mind wander out into the vast reaches of intergalactic space.

This is just the beginning; this map was created from the very preliminary observations made in the DES. The survey team plans to eventually acquire 35 times as much coverage of the sky as this map provides. The full survey is expected to advance our knowledge of the nature and distribution of both dark matter and dark energy substantially.

The press release of April 13th announcing this truly amazing map can be found here: http://www.fnal.gov/pub/presspass/press_releases/2015/Mapping-The-Cosmos-20150413.html

“The Dark Energy Survey is a collaboration of more than 300 scientists from 25 institutions in six countries. Its primary instrument, the Dark Energy Camera, is mounted on the 4-meter Blanco telescope at the National Optical Astronomy Observatory’s Cerro Tololo Inter-American Observatory in Chile, and its data is processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.”


Get every new post delivered to your Inbox.

Join 580 other followers