New calculations support dark-matter discovery by DAMA

Originally posted on physics4me:

A controversial claim by the DAMA group that it has detected dark matter in an underground lab in Italy might turn out to be true after all, according to physicists in Europe and the US. The new research reconciles the claimed detection with apparently null results from other experiments, as well as indirect astrophysical evidence. It proposes that dark matter interacts with ordinary matter not via one of the four known fundamental forces but instead through a fifth force mediated by an axion-like particle.

Dark matter is an as-yet-unknown substance that does not emit electromagnetic radiation but which numerous observations suggest makes up at least 80% of the matter in the universe. DAMA, a collaboration of physicists from Italy and China, says it has directly observed dark matter in a sodium-iodide detector located beneath Gran Sasso mountain east of Rome. The basis for its claim is a seasonal variation in…

View original 750 more words


2014 in review

The WordPress.com stats helper monkeys prepared a 2014 annual report for this blog.

Here’s an excerpt:

A New York City subway train holds 1,200 people. This blog was viewed about 7,900 times in 2014. If it were a NYC subway train, it would take about 7 trips to carry that many people.

Click here to see the complete report.


Milky Way Dark Matter Halo Loses ‘Weight’

640px-Milky_Way_ArchMilky Way Arch, CC BY 3.0Bruno Gilli/ESOhttp://www.eso.org/public/images/milkyway/

Mass estimates for our Milky Way vary widely, from less than 1 trillion, to as high as 4 trillion, times the mass of the Sun.

A recent paper by a group of astronomers in Australia argues for a mass that is very much at the low end of this range. Prajawal Kafle and collaborators present a kinematic analysis and build a model of the Milky Way that incorporates a disk, a bulge, and a dark matter halo. The analysis utilizes K giant and horizontal branch star catalogs.

The disk component – in which our Sun resides – contains stars and gas and active star formation from this gas. The spheroidal bulge contains the oldest stellar population of the galaxy, including globular clusters. The spherical halo, significantly larger and more massive than both the other components, is dominated by dark matter. It is chiefly responsible for the overall gravitational potential of the Milky Way, and is evidenced by the high rotational velocity of our galaxy in its outer regions.

The result of their analysis is that the dark matter halo “weighs in” at about 800 billion solar masses, the disk is about 100 billion solar masses, and the bulge is only about 10 billion solar masses. They also find a dark matter density in the solar neighborhood equivalent to about 1/3 of a proton per cubic centimeter, consistent with other estimates. (This number is important for calibrating Earth-bound direct detection experiments for dark matter.)

The relatively low mass they determine for the dark matter halo implies fewer satellite galaxies in close proximity to the Milky Way. We see only 3, the two Magellanic Clouds and the Sagittarius Dwarf Galaxy. In the past this has been seen as an issue for the favored Lambda – Cold Dark Matter (ΛCDM) Cosmology.

However their lower halo mass is actually consistent with the Milky Way gathering only 3 so-called sub-halos (satellite galaxies) and thus there may be no Missing Satellite Problem with ΛCDM. Some had suggested warm dark matter, rather than cold dark matter, may be necessary because of the putative missing satellite problem, but this may not be the case, with a lighter Milky Way dark matter halo.

Another team, Penarrubia and collaborators, has recently modeled the dynamics of the Local Group of galaxies. They are thus using a different methodology to determine the total mass of the Milky Way. They find a total mass for the Local Group of 2.3 trillion solar masses. The Local Group mass is almost entirely due to the Andromeda Galaxy and our Milky Way. They also determine a Milky Way to Amdromeda mass ratio of about 1/2. This implies a mass of about 0.8 trillion solar masses for our Milky Way, consistent with the Australian team’s result.

These two latest measurements of the Milky Way mass seem to indicate that the total mass of the Milky Way galaxy is less than 1 trillion solar masses. And these two results thus suggest that the ΛCDM cosmology is in fact consistent with the small number of satellite galaxies around our Milky Way. Another success for ΛCDM, it seems.

References:

http://article.wn.com/view/2014/10/10/Milky_Way_has_only_half_of_the_Dark_Matter_than_thought_earl/

http://arxiv.org/pdf/1408.1787v1.pdf – P. Kafle et al. 2014, “On the shoulders of giants: Properties of the stellar halo and Milky Way mass distribution”

J. Penarrubia et al. 2014, Monthly Notices of the Royal Astronomical Society, 443, 2204, “A dynamical model of the local cosmic expansion”


Dark Matter: Made of Sterile Neutrinos?

BulletGroup.XMM

Composite image of the Bullet Group showing galaxies, hot gas (shown in pink) and dark matter (indicated in blue). Credit: ESA / XMM-Newton / F. Gastaldello (INAF/IASF, Milano, Italy) / CFHTLS 

What’s more elusive than a neutrino? Why a sterile neutrino, of course. In the Standard Model of particle physics there are 3 types of “regular” neutrinos. The ghost-like neutrinos are electrically neutral particles with 1/2 integer spins and very small masses. Neutrinos are produced in weak interactions, for example when a neutron decays to a proton and an electron. The 3 types are paired with the electron and its heavier cousins, and are known as electron neutrinos, muon neutrinos, and tau neutrinos (νe, νμ, ντ).

A postulated extension to the Standard Model would allow a new type of neutrino, known as a sterile neutrino. “Sterile” refers to the fact that this hypothetical particle would not feel the standard weak interaction, but would couple to regular neutrino oscillations (neutrinos oscillate among the 3 types, and until this was realized there was consternation around the low number of solar neutrinos detected). Sterile neutrinos are more ghostly than regular neutrinos! The sterile neutrino would be a neutral particle, like other neutrino types, and would be a fermion, with spin 1/2. The number of types, and the respective masses, of sterile neutrinos (assuming they exist) is unknown. Since they are electrically neutral and do not feel the standard weak interaction they are very difficult to detect. But the fact that they are very hard to detect is just what makes them candidates for dark matter, since they still interact gravitationally due to their mass.

What about regular neutrinos as the source of dark matter? The problem is that their masses are too low, less than 1/3 of an eV (electron-Volt) total for the three types. They are thus “too hot” (speeds and velocity dispersions too high, being relativistic) to explain the observed properties of galaxy formation and clumping into groups and clusters. The dark matter should be “cold” or non-relativistic, or at least no more than “warm”, to correctly reproduce the pattern of galaxy groups, filaments, and clusters we observe in our Universe.

Constraints can be placed on the minimum mass for a sterile neutrino to be a good dark matter candidate. Observations of the cosmic microwave background and of hydrogen Lyman-alpha emission in quasar spectra have been used to set a lower bound of 2 keV for the sterile neutrino’s mass, if it is the predominant component of dark matter. A sterile neutrino with this mass or larger is expected to have a decay channel into a photon with half of the rest-mass energy and a regular (active) neutrino with half the energy.

A recent suggestion is that an X-ray emission feature seen at 3.56 keV (kilo-electron Volts) from galaxy clusters is a result of the decay of sterile neutrinos into photons with that energy plus active (regular) neutrinos with similar energy. This X-ray emission line has been seen in a data set from the XMM-Newton satellite that stacks results from 73 clusters of galaxies together. The line was detected in 2 different instruments with around 4 or 5 standard deviations significance, so the existence of the line itself is on a rather strong footing. However, it is necessary to prove that the line is not from an atomic transition from argon or some other element. The researchers argue that an argon line should be much, much weaker than the feature that is detected.

In addition, a second team of researchers, also using XMM-Newton data have claimed detection of lines at the same 3.56 keV energy in the Perseus cluster of galaxies as well as our neighbor, the Andromeda galaxy.

There are no expected atomic transition lines at this energy, so the dark matter decay possibility has been suggested by both teams. An argon line around 3.62 KeV is a possible influence on the signal, but is expected to be very much weaker. Confirmation of these XMM-Newton results are required from other experiments in order to gain more confidence in the reality of the 3.56 keV feature, regardless of its cause, and to eliminate with certainty the possibility of an atomic transition origin. Analysis of stacked galaxy cluster data is currently underway for two other X-ray satellite missions, Chandra and Suzaku. In addition, the astrophysics community eagerly awaits the upcoming Astro-H mission, a Japanese X-ray astronomy satellite planned for launch in 2015. It should be able to not only confirm the 3.56 keV X-ray line (if indeed real), but also detect it within our own Milky Way galaxy.

Thus the hypothesis is for dark matter composed primarily of sterile neutrinos of a little over 7.1 keV in mass (in E = mc^2 terms), and that the sterile neutrino has a decay channel to an X-ray photon and regular neutrino. Each decay product would have an energy of about 3.56 keV. Such a 7 keV sterile neutrino is plausible with respect to the known density of dark matter and various cosmological and particle physics constraints. If the dark matter is primarily due to this sterile neutrino, then it falls into the “warm” dark matter domain, intermediate between “cold” dark matter due to very heavy particles, or “hot” dark matter due to very light particles.

The abundance of dwarf satellite galaxies found in the Milky Way’s neighborhood is lower than predicted from cold dark matter models. Warm dark matter could solve this problem. As Dr. Abazajian puts in in his recent paper “Resonantly Produced 7 keV Sterile Neutrino Dark Matter Models and the Properties of Milky Way Satellites”

the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way galaxy’s total satellite abundance, the satellites’ radial distribution, and their mass density profile..

 


BICEP2 Apparently Detects Quantum Nature of Gravity and Supports Inflationary Big Bang

Can a single experiment do all of the following?

  1. Provide significant confirmation of the inflationary version of the Big Bang model (and help constrain which model of inflation is correct)
  2. Confirm the existence of gravitational waves
  3. Support the quantum nature of gravity (at very high energies)
  4. Provide the first direct insight into the highest energy levels imagined by physicists – 10^16 GeV (10,000 trillion GeV) – 12 orders of magnitude beyond the LHC

Apparently it can! BICEP2 is a radio telescope experiment located at the South Pole, taking advantage of the very cold, dry air at that remote location for greater sensitivity. It is focused on measuring polarization of the cosmic microwave background radiation that is a remnant of the hot Big Bang of the early universe. (BICEP is an abbreviation of Background Imaging of Cosmic Extragalactic Polarization; this is the second version of the experiment).

The results announced by the BICEP2 team on March 17 at the Harvard-Smithsonian Center for Astrophysics, if they have been correctly interpreted, are the most important in cosmology in the 21st century to date. They are of such enormous significance that a Nobel Prize in Physics is highly likely, if the results and interpretation are confirmed.

We infer from a number of previous observations that there was likely an inflationary period very early on in the universes’s history. We are talking very, very, early – in the first billionth of a trillionth of a trillionth of a second. See this earlier post of mine here: http://darkmatterdarkenergy.com/2011/03/22/inflation/ This new result from BICEP2 is very supportive of inflationary Big Bang models, and that includes very simple models for inflation.

What is the observation? It is B-mode polarization in the cosmic microwave background radiation. The cosmic microwave background (CMB) is the thermal radiation left over from a time when the universe became transparent, at age 380,000 years, almost 14 billion years ago. There are two polarization modes for alignment of CMB radiation, the E-mode and the B-mode. The B-mode measures the amount of “curliness” in the alignment of CMB microwave photons (as you can easily see in the image below).

There are two known causes of B-mode polarization for the CMB. The first, also detected by the BICEP2 experiment, is due to intervening clusters of galaxies along the line of sight. These clusters bend the light paths due to their immense masses, in accordance with general relativity. These effects are seen at smaller spatial scales. At larger spatial scales, we have the more significant effect, whereby the gravitational waves generated during the inflation epoch imprint the polarization.

 

Image

 

You can easily see the curly B-mode polarization with a quick glance at BICEP2’s results. (bicepkeck.org)

 

What is being seen in today’s CMB is due to this second and more profound cause, which is nothing less than quantum fluctuations in space-time in the very, very early universe revealing themselves due to the gravitational waves that they generated. And these gravitational waves in turn caused a small curling effect on the cosmic microwave background, until the time of decoupling of radiation and matter. This is seen in the image at angular scales of a few degrees.

At age 380,000 years the universe became transparent to the CMB radiation and it traveled for another 13.8 billion years and underwent a redshift by a factor of 1500 as the universe expanded. So what was optical radiation at that time, becomes microwave radiation today, with a characteristic temperature of 2.7 Kelvins (degrees above absolute zero), while still retaining the curly pattern seen by BICEP2.

This is the first observation that provides some direct insight into extremely high energy scales within the context of a single experiment. We are talking here of approximately a trillion times higher energy than the Large Hadron Collider, the world’s most powerful particle accelerator, where the Higgs boson was discovered.

The BICEP2 results are a single experiment that for the first time apparently ties quantum mechanics and gravity together. It supports the quantum nature of gravity, which occurs at very high energy scales. The Planck scale at which space-time would be quantized corresponds to an energy level of 10^18 or 10^19 GeV (ten million trillion GeV), and inflation in many models begins when the universe has an energy level somewhat lower, at 10^16 GeV (ten thousand trillion GeV, where 1 GeV is a little more than the rest mass-energy of a proton).

And take a look at this interview of Sean Carroll by PBS’s Gwen Ifill to get some more context around this (hopefully correct!) universe-expanding discovery. Other astronomers are already racing to confirm it.

 

References:

http://www.cfa.harvard.edu/CMB/bicep2/ – BICEP2 web site at Harvard-Smithsonian Center for Astrophysics

http://www.theguardian.com/science/2014/mar/17/bicep2-how-hot-big-bang-science-dark-energy

http://www.scientificamerican.com/article/gravity-waves-cmb-b-mode-polarization/


Axions as Cold Dark Matter

WIMP (weakly interacting massive particle) searches have been getting more frustrating. The LHC, as of yet, has found no evidence for supersymmetric extensions to the Standard Model for particle physics. The least massive supersymmetric particle, if it exists, is a favored WIMP candidate. But detection limits on WIMPs from several experiments are becoming more severe, and are in conflict with other possible or claimed detections. One way out of this quandary may be that there is more than one type of WIMP particle responsible for dark matter (prior blog).

Or perhaps the dominant dark matter constituent is not a WIMP at all. Baryons (ordinary matter) only contribute 1/5 of the total mass, and only 5% of the total mass-energy of the universe. The dark matter component cannot be baryons – this is ruled out by the abundances of deuterium, helium, and lithium generated via nucleosynthesis during the first few minutes of the Big Bang.

Dark matter must be “cold” that is, moving at low to moderate speeds, based on the way galaxies are distributed and cluster together. If dark matter is not due to baryons and not due to WIMPs, what other alternative is there? Neutrinos and other known light particles are ruled out by observations.

But there is another light particle, the axion, which has not been observed, yet is a good candidate as a “weakly interacting light particle” explanation for dark matter. Axions do not require the existence of supersymmetry. They have a strong theoretical basis in the Standard Model as an outgrowth of the necessity to have charge conjugation plus parity conserved in the strong nuclear force (quantum chromodynamics of quarks, gluons). This conservation property is known as CP-invariance. (While CP-invariance holds for the strong force, the weak force is CP violating).

The neutron, composed of three quarks, is observed to have no electric dipole moment, to very high accuracy, indicating CP-invariance holds for the strong force. An additional mechanism (field) is required to “enforce” the invariance. Initial theoretical work was done by Nobel winning physicists Weinberg and Wilczek in the 1970s. The axion is the corresponding particle for this field, providing the favored explanation for allowing the preservation of CP-invariance.

The axion, if it exists, has a very low mass, in the range of over 1 micro-eV to as much as 10 milli-eV. (One eV, or electron-Volt is the energy from moving one electron through a potential of one Volt). By comparison, electron neutrino masses are less than 2 eV, but axions are probably a thousand or more times lighter than the elusive neutrino.

Image

Installation of the insert chamber into the magnet of the ADMX, October 4, 2013.

The Axion Dark Matter Experiment (ADMX) at the University of Washington is the best known experiment searching for axions as a principal component of dark matter. It relies on the prediction that axions can be converted to photons in the presence of a magnetic field. A well-designed experiment requires a large microwave cavity at very low temperature to minimize noise, and with a strong magnetic field. ADMX consists of a microwave cavity surrounded by an 8 Tesla magnet and cooled to liquid helium temperatures.

ADMX has not yet detected axions, but it has placed limits on their interaction cross-section for masses in the range of about 2 to 3 micro-eV. These limits are consistent with the two most popular theoretical models. The ADMX team is in the process of upgrading the apparatus to a sensitivity that would allow them to detect axions if they adhere to one of the two main axion dark matter models, and have mass less than 10 micro-eV. They are scheduled to be able to reach this goal by the end of 2015.

Another interesting possibility is that 110 micro-eV axions may explain an anomalous signal seen in an experiment with Josephson junctions, and thus are already detected. Josephson junctions consist of two superconducting elements separated by an insulating layer. If the axion mass is resonant with the junction frequency, a current spike would occur. An exceptionally high noise spike in one such prior experiment could conceivably be due to an axion resonance signal. We await further experiments to see if the behavior can be repeated at the same frequency.

And for fun, here’s an historical perspective on the axion, from the 1960s, featuring Arthur Godfrey:

 

References:

http://www.phys.washington.edu/groups/admx/home.html - ADMX web site

https://commons.lbl.gov/download/attachments/88868578/rybka_taup_2013.pdf?version=1&modificationDate=1378925423266 – talk by Gray Rybka from the ADMX team

http://arstechnica.com/science/2013/12/could-dark-matter-be-hiding-in-plain-sight-in-existing-experiments/ – Josephson junction anomaly

 

 


2013 in review

The WordPress.com stats helper monkeys prepared a 2013 annual report for this blog.

Here’s an excerpt:

A New York City subway train holds 1,200 people. This blog was viewed about 4,900 times in 2013. If it were a NYC subway train, it would take about 4 trips to carry that many people.

Click here to see the complete report.


Follow

Get every new post delivered to your Inbox.

Join 351 other followers