Monthly Archives: October 2016

Axions, Inflation and Baryogenesis: It’s a SMASH (pi)

Searches for direct detection of dark matter have focused primarily on WIMPs (weakly interacting massive particles) and more precisely on LSPs (the lightest supersymmetric particle). These are hypothetical particles such as neutralinos that are least massive members of the hypothesized family of supersymmetric partner particles.

But supersymmetry may be dead. There have been no supersymmetric particles detected at the Large Hadron Collider at CERN as of yet, leading many to say that this is a crisis in physics.

At the same time as CERN has not been finding evidence for supersymmetry, WIMP dark matter searches have been coming up empty as well. These searches keep increasing in sensitivity with larger and better detectors and the parameter space for supersymmetric WIMPs is becoming increasingly constrained. Enthusiasm unabated, the WIMP dark matter searchers continue to refine their experiments.


LUX dark matter detector in a mine in Lead, South Dakota is not yet detecting WIMPs. Credit: Matt Kapust/ Sanford Underground Research Facility

What if there is no supersymmetry? Supersymmetry adds a huge number of particles to the particle zoo. Is there a simpler explanation for dark matter?

Alternative candidates under consideration for dark matter, including sterile neutrinos, axions, and primordial black holes, and are now getting more attention.

From a prior blog I wrote about axions as dark matter candidates:

Axions do not require the existence of supersymmetry. They have a strong theoretical basis in the Standard Model as an outgrowth of the necessity to have charge conjugation plus parity conserved in the strong nuclear force (quantum chromodynamics of quarks, gluons). This conservation property is known as CP-invariance. (While CP-invariance holds for the strong force, the weak force is CP violating).

In addition to the dark matter problem, there are two more outstanding problems at the intersection of cosmology and particle physics. These are baryogenesis, the mechanism by which matter won out over antimatter (as a result of CP violation of Charge and Parity), and inflation. A period of inflation very early on in the universe’s history is necessary to explain the high degree of homogeneity (uniformity) we see on large scales and the near flatness of the universe’s topology. The cosmic microwave background is at a uniform temperature of 2.73 Kelvins to better than one part in a hundred thousand across the sky, and yet, without inflation, those different regions could never have been in causal contact.

A team of European physicists have proposed a model SMASH that does not require supersymmetry and instead adds a few particles to the Standard Model zoo, one of which is the axion and is already highly motivated from observed CP violation. SMASH (Standard Model Axion Seesaw Higgs portal inflation) also adds three right-handed heavy neutrinos (the three known light neutrinos are all left-handed). And it adds a complex singlet scalar field which is the primary driver of inflation although the Higgs field can play a role as well.

The SMASH model is of interest for new physics at around 10^11 GeV or 100 billion times the rest mass of the proton. For comparison, the Planck scale is near 10^19 GeV and the LHC is exploring up to around 10^4 GeV (the proton rest mass is just under 1 GeV and in this context GeV is short hand for GeV divided by the speed of light squared).


Figure 1 from Ballesteros G. et al. 2016. The colored contours represent observational limits from the Planck satellite and other sources regarding the tensor-to-scalar power ratio of primordial density fluctuations (r, y-axis) and the spectral index of these fluctuations (ns, x-axis). These constraints on primordial density fluctuations in turn constrain the inflation models. The dashed lines ξ = 1, .1, .01, .001 represent a key parameter in the assumed slow-roll inflation potential function. The near vertical lines labelled 50, 60, 70, 80 indicate the number N of e-folds to the end of inflation, i.e. the universe inflates by a factor of e^N in each of 3 spatial dimensions during the inflation phase.

So with a single model, with a few extensions to the Standard Model, including heavy right-handed (sterile) neutrinos, an inflation field, and an axion, the dark matter, baryogenesis and inflation issues are all addressed. There is no need for supersymmetry in the SMASH model and the axion and heavy neutrinos are already well motivated from particle physics considerations and should be detectable at low energies. Baryogenesis in the SMASH model is a result of decay of the massive right-handed neutrinos.

Now the mass of the axion is extremely low, of order 50 to 200 μeV (millionths of an eV) in their model (by comparison, neutrino mass limits are of order 1 eV), and detection is a difficult undertaking.

There is currently only one active terrestrial axion experiment for direct detection, ADMX. It has its primary detection region at lower masses than the SMASH model is suggesting, and has placed interesting limits in the 1 to 10 μeV range. It is expected to push its range up to around 30 μeV in a couple of years. But other experiments such as MADMAX and ORPHEUS are coming on line in the next few years that will explore the region around 100 μeV, which is more interesting for the SMASH model.

Not sure why the researchers didn’t call this the SMASHpie model (Standard Model Axion Seesaw Higgs portal inflation), because it’s a pie in the face to Supersymmetry!


It would be wonderfully economical to explain baryogenesis, inflation, and dark matter with a handful of new particles, and to finally detect dark matter particles directly.


“Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism” Ballesteros G., Redondo J., Ringwald A., and Tamarit C. 2016