Advertisements

Monthly Archives: November 2012

Looking for Dark Energy in the Lyman Alpha Forest

Baryon acoustic oscillations (BAO) are the acoustic (sound) waves that occur in the very early universe due to very small density inhomogeneities in the nearly uniform fluid. These primordial acoustic oscillations have left an imprint on the way in which galaxies are spatially distributed. The characteristic scale length for these oscillations is around 500 million light years (in the frame of the present-day universe). A spatial correlation function is used to measure the degree to which galaxies and clumps of matter in general, including dark matter, are separated from one another. The characteristic length scale serves as a standard ruler for very large-scale clustering, and is seen as a distinctive break (change in slope) in the power spectrum of the degree of spatial correlation vs. distance.

An international consortium of astronomers representing 29 institutions have submitted a paper last month to the journal Astronomy and Astrophysics; the current version can be found here (http://arxiv.org/abs/1211.2616). They used a clever technique of detecting clouds of neutral hydrogen along the line of sight to a large number of quasars with high redshifts. Thus the matter clumps in this case are neutral hydrogen clouds or neutral hydrogen within intervening galaxies or proto-galaxies. These absorb light from the quasar and produce absorption lines in the spectrum at discrete locations corresponding to various redshifts. The authors are detecting a characteristic transition known as the Lyman alpha line, which is found well into the ultraviolet at 121.6 nanometers (for zero redshift).

For this work over 48,000 high-redshift quasars, with a mean redshift of 2.3, were taken from the 3rd Sloan Digital Sky Survey. A quasar may have many hydrogen clouds intervening along the line of sight from the Earth to the quasar. These clouds will be seen at different redshifts (less than the quasar redshift) reflecting their position along the line of sight. This is referred to as the Lyman alpha “forest”. This study is the first application of Lyman alpha forest measurement to the detection of the BAO feature. At the average red shift of 2.3, the wavelength of Lyman alpha radiation is shifted to 401.3 nm [calculated as (1+2.3)*121.6 nm], in the violet portion of the visible spectrum. The study incorporated redshifts from the absorbing clouds in the range of 1.96 to 3.38; these are found in front of (at lower redshift than) quasars with redshifts ranging from 2.1 to 3.5.

Speedup or slowdown versus age of universe. The Big Bang is on the left, 13.7 billion years ago.

The authors’ measurement of the expansion rate of the universe is shown as the red dot in this figure. The white line through the various data points is the rate of expansion of the universe expected versus time for the standard Lambda-Cold Dark Matter cosmological model. The expansion rate at early times was lessening due to gravity from matter (ordinary and dark), but it is now increasing, since dark energy has come to dominate during the last 5 billion years or so. The red data point is clearly on the slowing down portion of the curve. Image credit: http://sdss3.wordpress.com/2012/11/13/boss-detects-baryon-acoustic-oscillations-in-the-lyman-alpha-forest-at-z-of-2-3/  

The BAO feature has been measured a number of times, using galaxy spatial distributions, but always at lower redshifts, that is at more recent times. This is not only the first Lyman alpha-based measurement, but the first measurement made at a high redshift for which the universe was still slowing down, i.e. the expansion was decelerating. At the redshift of 2.3, when the universe was only about 3 billion years old, the gravitational effect of dark plus ordinary matter was stronger than the repulsive effect of dark energy. It is only more recently, after the universe become about 9 billion years old (some 5 billion years ago), and corresponding to redshifts less than about z = 0.8, that dark energy began to dominate and cause an acceleration in the overall expansion of the universe.

Since this observation shows a significantly higher rate of expansion than occurred at the minimum around 5 billion years ago, it is further evidence that dark energy in some form is real. As the authors state in their paper: “Combined with CMB constraints, we deduce the expansion rate at z = 2.3 and demonstrate directly the sequence of deceleration and acceleration expected in dark-energy dominated cosmologies.” This is an exciting result, providing additional confirmation that dark energy represents around three-quarters of the present-day energy balance of the universe.

Advertisements

Supersymmetry in Trouble?

Image

There’s a major particle physics symposium going on this week in Kyoto, Japan – Hadron Collider Physics 2012. A paper from the LHCb collaboration, with 619 authors, was presented on the opening day, here is the title and abstract:

First evidence for the decay Bs -> mu+ mu-

A search for the rare decays Bs->mu+mu- and B0->mu+mu- is performed using data collected in 2011 and 2012 with the LHCb experiment at the Large Hadron Collider. The data samples comprise 1.1 fb^-1 of proton-proton collisions at sqrt{s} = 8 TeV and 1.0 fb^-1 at sqrt{s}=7 TeV. We observe an excess of Bs -> mu+ mu- candidates with respect to the background expectation. The probability that the background could produce such an excess or larger is 5.3 x 10^-4 corresponding to a signal significance of 3.5 standard deviations. A maximum-likelihood fit gives a branching fraction of BR(Bs -> mu+ mu-) = (3.2^{+1.5}_{-1.2}) x 10^-9, where the statistical uncertainty is 95% of the total uncertainty. This result is in agreement with the Standard Model expectation. The observed number of B0 -> mu+ mu- candidates is consistent with the background expectation, giving an upper limit of BR(B0 -> mu+ mu-) < 9.4 x 10^-10 at 95% confidence level.

In other words, the LHCb consortium claim to have observed the quite rare decay channel from B-mesons to muons (each B-meson decaying to two muons), representing about 3 occurrences out of each 1 billion decays of the Bs type of the B-meson. Their detection has marginal statistical significance of 3.5 standard deviations (one would prefer 5 deviations), so needs further confirmation.

What’s a B-meson? It’s a particle that consists of a quark and an anti-quark. Quarks are the underlying constituents of protons and neutrons, but they are composed of 3 quarks each, whereas B-mesons have just two each. The particle is called B-meson because one of the quarks is a bottom quark (there are 6 types of quarks: up, down, top, bottom, charge, strange plus the corresponding anti-particles). A Bs-meson consists of a strange quark and an anti-bottom quark (the antiparticle of the bottom quark). Its mass is between 5 and 6 times that of a proton.

What’s a muon? It’s a heavy electron, basically, around 200 times heavier.

What’s important about this proposed result is that the decay ratio (branching fraction) that they have measured is fully consistent with the Standard Model of particle physics, without adding supersymmetry. Supersymmetry relates known particles with integer multiple spin to as-yet-undetected particles with half-integer spin (and known particles of half-integer spin to as-yet-undetected particles with integer spin). So each of the existing Standard Model particles has a “superpartner”.

Yet the very existence of what appears to be a Higgs Boson at around 125 GeV as announced at the LHC in July of this year is highly suggestive of the existence of supersymmetry of some type. Supersymmetry is one way to get the Higgs to have a “reasonable” mass such as what has been found. And there are many other outstanding issues with the Standard Model that supersymmetric theories could help to resolve.

Now this has implications for the interpretation of dark matter as well. One of the favored explanations for dark matter, if it is composed of some fundamental particle, is that it is one type of supersymmetric particle. Since dark matter persists throughout the history of the universe, nearly 14 billion years, it must be highly stable. Now the least massive particle in supersymmetry theories is stable, i.e. does not decay since there is no lighter supersymmetric particle into which it can decay. And this so called LSP for lightest supersymmetric particle is the favored candidate for dark matter.

So if there is no supersymmetry then there needs to be another explanation for dark matter.