Tag Archives: Andromeda galaxy

Primordial Black Holes and Dark Matter

Based on observed gravitational interactions in galactic halos (galaxy rotation curves) and in group and clusters, there appears to be 5 times as much dark matter as ordinary matter in the universe. The alternative is no dark matter, but more gravity than expected at low accelerations, as discussed in this post on emergent gravity.

The main candidates for dark matter are exotic, undiscovered particles such as WIMPs (weakly interacting massive particles) and axions. Experiments attempting direct detection for these have repeatedly come up short.

The non-particle alternative category is MACHOs (massive compact halo objects) composed of ordinary matter.  Planets, dwarf stars and neutron stars have been ruled out by various observational signatures. The one ordinary matter possibility that has remained viable is that of black holes, and in particular black holes with much less than the mass of the Sun.

The only known possibility for such low mass black holes is that of primordial black holes (PBHs) formed in the earliest moments of the Big Bang.

Gravitational microlensing, or microlensing for short, seeks to detect PBHs by their general relativistic gravitational effect on starlight. MACHO and EROS were experiments to monitor stars in the Large Magellanic Cloud. These were able to place limits on the abundance of PBHs with masses from about one hundred millionth of a the Sun’s mass up to 10 solar masses. PBHs from that mass range are not able to explain the total amount of dark matter determined from gravitational interactions.

LIGO has recently detected several merging black holes in the tens of solar mass range. However the frequency of LIGO detections appears too low by two orders of magnitude to explain the amount of gravitationally detected dark matter. PBHs in this mass range are also constrained by cosmic microwave background observations.

Extremely low mass PBHs, below 10 billion tons, cannot survive until the present epoch of the universe. This is due to Hawking radiation. Black holes evaporate due to their quantum nature. Solar mass black holes have an extremely long lifetime against evaporation. But very low mass black holes will evaporate in billions of years or much sooner, depending on mass.

The remaining mass window for possible PBH, in sufficient amount to explain dark matter, is from about 10 trillion ton objects up to those with ten millionths of the Sun’s mass.


Figure 5 from H. Niikura et al. “Microlensing constraints on primordial black holes with the Subaru/HSC Andromeda observation”,  

Here f is the fraction of dark matter which can be explained by PBHs. The red shaded area is excluded by the authors observations and analysis of Andromeda Galaxy data. This rules out masses above 100 trillion tons and below a hundred thousandth of the Sun’s mass. (Solar mass units used above and grams are used below).


Now, a team of Japanese astronomers have used the Subaru telescope on the Big Island of Hawaii (operated by Japan’s national observatory) to determine constraints on PBHs by observing millions of stars in the Andromeda Galaxy.

The idea is that a candidate PBH would pass in front of the line of sight to the star, acting as a lens, and magnifying the light from the star in question for a relatively brief period of time. The astronomers looked for stars exhibiting variability in their light intensity.

With only a single nights’ data they made repeated short exposures and were able to pick out over 15,000 stars in Andromeda exhibiting such variable light intensity. However, among these possible candidates, only a single one turned out to fit the characteristics expected for a PBH detection.

If PBHs in this mass range were sufficiently abundant to explain dark matter, then one would have expected of order one thousand events, and they saw nothing like this number. In summary, with 95% confidence, they are able to rule out PBHs as the main source of dark matter for the mass range from 100 trillion tons up to one hundred thousandth of the Sun’s mass.

The window for primordial black holes as the explanation for dark matter appears to be closing.






Supernovae Destroy Dwarf Galaxies: Dark Matter is Safe

The existence of dark matter has not exactly been under threat – the ratio of dark matter to ordinary matter in the universe is well established, at about 5:1 in favor of dark matter. Consistent results are found between observations of the cosmic microwave background, observations of clusters of galaxies, and observations of the rotation curves of galaxies. (The MOND theory as an alternative to dark matter does not do well at scales greater than that of individual galaxy rotation curves.)

But there has been an issue around galaxy formation. It has been expected that many more dwarf galaxies should be seen in our Local Group, which is dominated by the Andromeda Galaxy (#1) and our Milky Way Galaxy (#2, sorry folks), along with the aptly named Triangulum Galaxy (#3).

Where are the Dwarfs?

Our Milky Way has only around 30 dwarf galaxies as companions, the best known of which are the Large and Small Magellanic Clouds. While a few more have been discovered only recently, simulations of galaxy formation have previously suggested this number ought to be more than 1000! This posed a problem for both our understanding of dark matter and our understanding of galaxy formation.

Now, from CalTech comes a much more detailed simulation of how galaxies similar to the Milky Way are formed. The researchers used over 700,000 CPU hours of supercomputer time to create the most detailed simulation ever of the galaxy formation and evolution processes.

“In a galaxy, you have 100 billion stars, all pulling on each other, not to mention other components we don’t see like dark matter. To simulate this, we give a supercomputer equations describing those interactions and then let it crank through those equations repeatedly and see what comes out at the end.”  – Caltech’s Phil Hopkins, associate professor of theoretical astrophysics.

Death by Supernova

Postdoc Andrew Wetzel and Prof. Hopkins paid special attention to the effects of supernovae. When supernovae explode they release tremendous amounts of kinetic energy. They generate powerful winds that reach speeds of over a thousand kilometers per second.

In a dwarf galaxy an individual supernova can have substantial effect. The researchers’ simulations indicate that dwarf galaxies can actually be destroyed by the effect of even a single supernova during their early history. Stars and gas that would form future stars can both be blown out of the dwarf galaxies. In addition, many dwarf galaxies in the Milky Way’s neighborhood would have been destroyed by the gravitational tidal forces of the Milky Way, the simulations show.

These advanced galaxy evolution simulations appear to solve the dark matter and dwarf galaxy problem. The authors plan to refine their results and develop even greater understanding of galaxy formation with simulations of even greater power in the future.


Simulated View of Milky Way Galaxy
The formation and evolution of the galaxy were done on a supercomputer. Credit: Hopkins Research Group/Caltech


Blue Tides and the Milky Way

I recently wrote about the  largest high-redshift cosmological simulation of galaxy formation ever, which has been recently completed by a group of astrophysicists in the U.S. and the U.K. This tour-de-force simulation, named BlueTides, was performed on the Blue Waters Cray XE supercomputer at NCSA and employed 648,000 cores. The researchers utilized approximately 700 billion particles (!) to represent dark matter and ordinary matter and to create galaxies inside the supercomputer.

You can find the full article describing the simulation at

Galaxies are the fundamental building blocks of the large scale structure of the universe. Very early on, before the first galaxies formed, the universe was a highly uniform mix of dark matter and ordinary matter, but with about 5 times as much dark matter by mass relative to the ordinary matter (protons, neutrons, electrons) that makes up the visible parts of galaxies, including stars, gas and dust. Ares of higher dark matter density play a key role in gravitationally attracting ordinary matter that forms galaxies and stars.

When we think of the word galaxy we typically think of beautiful modern day spiral galaxies, such as the Andromeda Galaxy. Spiral galaxies are flattened, rotating disks; the spiral arms represent concentrations of matter and of star-forming regions. The most distant disk-shaped galaxies that have been detected are at redshifts of 2 to 3, so we are seeing them as they were when the universe was around 2 to 3 billion years old. (The higher the redshift the more distant the galaxy and also the farther back in time we are looking, toward the universe’s origin some 13.8 billion years ago).


Two spiral galaxies starting to collide. Image Credit: Debra Meloy Elmegreen (Vassar College) et al.,
& the Hubble Heritage Team (AURA/STScI/NASA)

The BlueTides simulation provides insight into what was going on when the universe was only around 1/2 a billion years old, with galaxy redshifts around 8 to 10. It does a good job of matching the limited observational data we have at such highredshifts, in particular the rest frame (before redshift) ultraviolet luminosities of the earliest detected galaxies from the Hubble Space Telescope surveys.

Their simulation finds that, among the most massive galaxies in their simulation, “a significant fraction are visually disk-like, and surprisingly regular in shape”. In other words, they appear to be the progenitors of present-day spiral galaxies. They find that, at a redshift of 8, a full 70% of their virtual galaxies with masses above 10 billion solar masses are classifiable as disks, since a majority of stellar orbits lie in the plane of the disk.


Simulated high-redshift galaxies from BlueTides – Figure 1 from Feng et al.

They also find that mergers are not of major significance in the build-up of these early massive galaxies. Rather it appears that they grew primarily by cold gas arriving from preferred directions, namely along filaments in the density distribution of the background gas. It is well known that the universe has a web-like or filamentary structure of high density regions interspersed with voids (relatively empty regions). This filamentary structure is believed on the basis of many simulations of the large-scale universe to have begun at an early date.

A future infrared satellite known as WFIRST will have a field of view 200 times larger than the Wide Field Camera on the Hubble. Also, its design for infrared radiation detection makes it appropriate for studying the light from high-redshift galaxies. The authors predict that a survey of 2000 square degrees with WFIRST should find roughly 8000 massive disk-type galaxies at redshifts above 8. Future very large ground-based telescopes will be able to make follow-up observations of galaxies discovered by WFIRST. Such observations will provide further insight into the nature of galaxy formation, including accretion of material from the background and the details of dark matter’s role in the process.


Feng et al. 2015, “The Formation of Milky Way-Mass Disk Galaxies in the First 500 Million Years of a Cold Dark Matter Universe”

Discovery of several dwarf galaxies near the Magellanic Clouds

Dwarf galaxies are, as the name implies, small or even tiny galaxies with much lower mass and luminosity than large galaxies such as our own Milky Way galaxy or the Andromeda galaxy or Triangulum galaxy. The first two galaxies are the dominant members of our Local Group of galaxies, which has over 50 members. While the Milky Way and Andromeda have over 200 billion stars each, most all of the others are much smaller and intrinsically fainter, and thus are considered dwarf galaxies. Around half of these known dwarf galaxies are companions to our Milky Way, and the rest are companions of Andromeda.


Previously known dwarf satellite galaxies around our Milky Way galaxy are shown as blue dots and the 9 new candidates are shown as red dots. Image: Yao-Yuan Mao, Ralf Kaehler, Risa Wechsler (KIPAC/SLAC).

The Dark Energy Survey “powered up” in the second half of 2013. Using the Dark Energy  Camera at the Cerro Tololo Inter-American observatory in Chile, two teams of astronomers have now made a stunning discovery of 9 new dwarf objects in the vicinity of, and gravitationally bound to, our own Milky Way. Three of these are confirmed to be dwarf galaxies. The other six objects are either dwarf galaxies or globular clusters, and further observations will be required to determine how many of these are indeed dwarf galaxies.

These new dwarf galaxies and dwarf galaxy candidates were found in the vicinity of the Magellanic Clouds, in the Southern Hemisphere. Those are themselves the two best known of all dwarf galaxies, but are substantially brighter and larger than these new dwarf galaxy candidates. In fact it is possible, but not certain, that the newly discovered dwarf galaxies have interacted with one or both of the Magellanic Clouds in the past.

This discovery of 3 or more new dwarf galaxies near to our Milky Way, in the range of about 100,000 light-years to 1.2 million light-years away from us, has important implications for our understanding of dark matter and cosmology generally. We know from a wide range of observations, including the latest Planck satellite results, that dark matter is 5 times more common than ordinary matter in the universe.

Dark matter and ordinary matter are distributed differently. Think of dark matter as the scaffolding which controls the overall distribution of matter at large scale. Ordinary matter is thus controlled gravitationally by the dark matter background. But ordinary matter also clumps together at smaller scales because as it collapses (falls into a gravitational potential well) it heats up via frictional processes. Next it radiates away energy, leading to cooling, and thus further collapse. This is how we end up with galaxies and stellar formation.

Large galaxies will be dominated by ordinary matter toward their centers, but by dark matter in their outer regions and halos. Many dwarf galaxies appear to have few stars, as little as only a few thousand, reflecting quite modest amounts of ordinary matter. These galaxies are heavily dominated by dark matter, sometimes 99% or more.

There is a whole theory of galaxy formation based on the growth of dark matter-dominated density perturbations that collapse under their own gravity, even while the universe as a whole is expanding. Ordinary matter is pulled into the regions of high dark matter density, leading to galaxy formation. Low density regions do not collapse, but keep on expanding in,the “Hubble flow”.

Numerical simulations of the growth of these dark matter density perturbations and of galaxy formation suggest there should be large numbers of dwarf galaxies. As we continue to discover more dwarf galaxies in the vicinity of our Milky Way, through the Dark Energy Survey and other experiments, our confidence in our understanding of cosmology and of galactic formation and evolution will continue to grow.

References  – CNET article – Article at University of Cambridge astronomy web site – Article at Fermilab web site (home of the Dark Energy Survey) – Dark Energy Survey web site – S. Koposov, V. Belokurov, G. Torrealba, N. Wyn Evans, ”Beasts of the Southern Wild. Discovery of a large number of Ultra Faint satellites in the vicinity of the Magellanic Clouds”

Milky Way Dark Matter Halo Loses ‘Weight’

640px-Milky_Way_ArchMilky Way Arch, CC BY 3.0Bruno Gilli/ESO

Mass estimates for our Milky Way vary widely, from less than 1 trillion, to as high as 4 trillion, times the mass of the Sun.

A recent paper by a group of astronomers in Australia argues for a mass that is very much at the low end of this range. Prajawal Kafle and collaborators present a kinematic analysis and build a model of the Milky Way that incorporates a disk, a bulge, and a dark matter halo. The analysis utilizes K giant and horizontal branch star catalogs.

The disk component – in which our Sun resides – contains stars and gas and active star formation from this gas. The spheroidal bulge contains the oldest stellar population of the galaxy, including globular clusters. The spherical halo, significantly larger and more massive than both the other components, is dominated by dark matter. It is chiefly responsible for the overall gravitational potential of the Milky Way, and is evidenced by the high rotational velocity of our galaxy in its outer regions.

The result of their analysis is that the dark matter halo “weighs in” at about 800 billion solar masses, the disk is about 100 billion solar masses, and the bulge is only about 10 billion solar masses. They also find a dark matter density in the solar neighborhood equivalent to about 1/3 of a proton per cubic centimeter, consistent with other estimates. (This number is important for calibrating Earth-bound direct detection experiments for dark matter.)

The relatively low mass they determine for the dark matter halo implies fewer satellite galaxies in close proximity to the Milky Way. We see only 3, the two Magellanic Clouds and the Sagittarius Dwarf Galaxy. In the past this has been seen as an issue for the favored Lambda – Cold Dark Matter (ΛCDM) Cosmology.

However their lower halo mass is actually consistent with the Milky Way gathering only 3 so-called sub-halos (satellite galaxies) and thus there may be no Missing Satellite Problem with ΛCDM. Some had suggested warm dark matter, rather than cold dark matter, may be necessary because of the putative missing satellite problem, but this may not be the case, with a lighter Milky Way dark matter halo.

Another team, Penarrubia and collaborators, has recently modeled the dynamics of the Local Group of galaxies. They are thus using a different methodology to determine the total mass of the Milky Way. They find a total mass for the Local Group of 2.3 trillion solar masses. The Local Group mass is almost entirely due to the Andromeda Galaxy and our Milky Way. They also determine a Milky Way to Amdromeda mass ratio of about 1/2. This implies a mass of about 0.8 trillion solar masses for our Milky Way, consistent with the Australian team’s result.

These two latest measurements of the Milky Way mass seem to indicate that the total mass of the Milky Way galaxy is less than 1 trillion solar masses. And these two results thus suggest that the ΛCDM cosmology is in fact consistent with the small number of satellite galaxies around our Milky Way. Another success for ΛCDM, it seems.

References: – P. Kafle et al. 2014, “On the shoulders of giants: Properties of the stellar halo and Milky Way mass distribution”

J. Penarrubia et al. 2014, Monthly Notices of the Royal Astronomical Society, 443, 2204, “A dynamical model of the local cosmic expansion”

Dark Matter: Made of Sterile Neutrinos?


Composite image of the Bullet Group showing galaxies, hot gas (shown in pink) and dark matter (indicated in blue). Credit: ESA / XMM-Newton / F. Gastaldello (INAF/IASF, Milano, Italy) / CFHTLS 

What’s more elusive than a neutrino? Why a sterile neutrino, of course. In the Standard Model of particle physics there are 3 types of “regular” neutrinos. The ghost-like neutrinos are electrically neutral particles with 1/2 integer spins and very small masses. Neutrinos are produced in weak interactions, for example when a neutron decays to a proton and an electron. The 3 types are paired with the electron and its heavier cousins, and are known as electron neutrinos, muon neutrinos, and tau neutrinos (νe, νμ, ντ).

A postulated extension to the Standard Model would allow a new type of neutrino, known as a sterile neutrino. “Sterile” refers to the fact that this hypothetical particle would not feel the standard weak interaction, but would couple to regular neutrino oscillations (neutrinos oscillate among the 3 types, and until this was realized there was consternation around the low number of solar neutrinos detected). Sterile neutrinos are more ghostly than regular neutrinos! The sterile neutrino would be a neutral particle, like other neutrino types, and would be a fermion, with spin 1/2. The number of types, and the respective masses, of sterile neutrinos (assuming they exist) is unknown. Since they are electrically neutral and do not feel the standard weak interaction they are very difficult to detect. But the fact that they are very hard to detect is just what makes them candidates for dark matter, since they still interact gravitationally due to their mass.

What about regular neutrinos as the source of dark matter? The problem is that their masses are too low, less than 1/3 of an eV (electron-Volt) total for the three types. They are thus “too hot” (speeds and velocity dispersions too high, being relativistic) to explain the observed properties of galaxy formation and clumping into groups and clusters. The dark matter should be “cold” or non-relativistic, or at least no more than “warm”, to correctly reproduce the pattern of galaxy groups, filaments, and clusters we observe in our Universe.

Constraints can be placed on the minimum mass for a sterile neutrino to be a good dark matter candidate. Observations of the cosmic microwave background and of hydrogen Lyman-alpha emission in quasar spectra have been used to set a lower bound of 2 keV for the sterile neutrino’s mass, if it is the predominant component of dark matter. A sterile neutrino with this mass or larger is expected to have a decay channel into a photon with half of the rest-mass energy and a regular (active) neutrino with half the energy.

A recent suggestion is that an X-ray emission feature seen at 3.56 keV (kilo-electron Volts) from galaxy clusters is a result of the decay of sterile neutrinos into photons with that energy plus active (regular) neutrinos with similar energy. This X-ray emission line has been seen in a data set from the XMM-Newton satellite that stacks results from 73 clusters of galaxies together. The line was detected in 2 different instruments with around 4 or 5 standard deviations significance, so the existence of the line itself is on a rather strong footing. However, it is necessary to prove that the line is not from an atomic transition from argon or some other element. The researchers argue that an argon line should be much, much weaker than the feature that is detected.

In addition, a second team of researchers, also using XMM-Newton data have claimed detection of lines at the same 3.56 keV energy in the Perseus cluster of galaxies as well as our neighbor, the Andromeda galaxy.

There are no expected atomic transition lines at this energy, so the dark matter decay possibility has been suggested by both teams. An argon line around 3.62 KeV is a possible influence on the signal, but is expected to be very much weaker. Confirmation of these XMM-Newton results are required from other experiments in order to gain more confidence in the reality of the 3.56 keV feature, regardless of its cause, and to eliminate with certainty the possibility of an atomic transition origin. Analysis of stacked galaxy cluster data is currently underway for two other X-ray satellite missions, Chandra and Suzaku. In addition, the astrophysics community eagerly awaits the upcoming Astro-H mission, a Japanese X-ray astronomy satellite planned for launch in 2015. It should be able to not only confirm the 3.56 keV X-ray line (if indeed real), but also detect it within our own Milky Way galaxy.

Thus the hypothesis is for dark matter composed primarily of sterile neutrinos of a little over 7.1 keV in mass (in E = mc^2 terms), and that the sterile neutrino has a decay channel to an X-ray photon and regular neutrino. Each decay product would have an energy of about 3.56 keV. Such a 7 keV sterile neutrino is plausible with respect to the known density of dark matter and various cosmological and particle physics constraints. If the dark matter is primarily due to this sterile neutrino, then it falls into the “warm” dark matter domain, intermediate between “cold” dark matter due to very heavy particles, or “hot” dark matter due to very light particles.

The abundance of dwarf satellite galaxies found in the Milky Way’s neighborhood is lower than predicted from cold dark matter models. Warm dark matter could solve this problem. As Dr. Abazajian puts in in his recent paper “Resonantly Produced 7 keV Sterile Neutrino Dark Matter Models and the Properties of Milky Way Satellites”

the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way galaxy’s total satellite abundance, the satellites’ radial distribution, and their mass density profile..