Advertisements

Tag Archives: Einstein

Matter and Energy Tell Spacetime How to Be: Dark Gravity

Is gravity fundamental or emergent? Electromagnetism is one example of a fundamental force. Thermodynamics is an example of emergent, statistical behavior.

Newton saw gravity as a mysterious force acting at a distance between two objects, obeying the well-known inverse square law, and occurring in a spacetime that was inflexible, and had a single frame of reference.

Einstein looked into the nature of space and time and realized they are flexible. Yet general relativity is still a classical theory, without quantum behavior. And it presupposes a continuous fabric for space.

As John Wheeler said, “spacetime tells matter how to move; matter tells spacetime how to curve”. Now Wheeler full well knew that not just matter, but also energy, curves spacetime.

A modest suggestion: invert Wheeler’s sentence. And then generalize it. Matter, and energy, tells spacetime how to be.

Which is more fundamental? Matter or spacetime?

Quantum theories of gravity seek to couple the known quantum fields with gravity, and it is expected that at the extremely small Planck scales, time and space both lose their continuous nature.

In physics, space and time are typically assumed as continuous backdrops.

But what if space is not fundamental at all? What if time is not fundamental? It is not difficult to conceive of time as merely an ordering of events. But space and time are to some extent interchangeable, as Einstein showed with special relativity.

So what about space? Is it just us placing rulers between objects, between masses?

Particle physicists are increasingly coming to the view that space, and time, are emergent. Not fundamental.

If emergent, from what? The concept is that particles, and quantum fields, for that matter, are entangled with one another. Their microscopic quantum states are correlated. The phenomenon of quantum entanglement has been studied in the laboratory and is well proven.

Chinese scientists have even, just last year, demonstrated quantum entanglement of photons over a satellite uplink with a total path exceeding 1200 kilometers.

Quantum entanglement thus becomes the thread Nature uses to stitch together the fabric of space. And as the degree of quantum entanglement changes the local curvature of the fabric changes. As the curvature changes, matter follows different paths. And that is gravity in action.

Newton’s laws are an approximation of general relativity for the case of small accelerations. But if space is not a continuous fabric and results from quantum entanglement, then for very small accelerations (in a sub-Newtonian range) both Newton dynamics and general relativity may be incomplete.

The connection between gravity and thermodynamics has been around for four decades, through research on black holes, and from string theory. Jacob Bekenstein and Stephen Hawking determined that a black hole possesses entropy proportional to its area divided by the gravitational constant G. This area law entropy approach can be used to derive general relativity as Ted Jacobson did in 1995.

But it may be that the supposed area law component is insufficient; according to Erik Verlinde’s new emergent gravity hypothesis, there is also a volume law component for entropy, that must be considered due to dark energy and when accelerations are very low.

We have had hints about this incomplete description of gravity in the velocity measurements made at the outskirts of galaxies during the past eight decades. Higher velocities than expected are seen, reflecting higher acceleration of stars and gas than Newton (or Einstein) would predict. We can call this dark gravity.

Now this dark gravity could be due to dark matter. Or it could just be modified gravity, with extra gravity over what we expected.

It has been understood since the work of Mordehai Milgrom in the 1980s that the excess velocities that are observed are better correlated with extra acceleration than with distance from the galactic center.

Stacey McGaugh and collaborators have demonstrated a very tight correlation between the observed accelerations and the expected Newtonian acceleration, as I discussed in a prior blog here. The extra acceleration kicks in below a few times 10^{-10} meters per second per second (m/s²).

This is suspiciously close to the speed of light divided by the age of the universe! Which is about 7 \cdot 10^{-10} m/s².

Why should that be? The mass/energy density (both mass and energy contribute to gravity) of the universe is dominated today by dark energy.

The canonical cosmological model has 70% dark energy, 25% dark matter, and 5% ordinary matter. In fact if there is no dark matter, just dark gravity, or dark acceleration, then it could be more like a 95% and 5% split between dark energy and (ordinary) matter components.

A homogeneous universe composed only of dark energy in general relativity is known as a de  Sitter (dS) universe. Our universe is, at present, basically a dS universe ‘salted’ with matter.

Then one needs to ask how does gravity behave in dark energy influenced domains? Now unlike ordinary matter, dark energy is highly uniformly distributed on the largest scales. It is driving an accelerated expansion of the universe (the fabric of spacetime!) and dragging the ordinary matter along with it.

But where the density of ordinary matter is high, dark energy is evacuated. An ironic thought, since dark energy is considered to be vacuum energy. But where there is lots of matter, the vacuum is pushed aside.

That general concept was what Erik Verlinde used to derive an extra acceleration formula in 2016. He modeled an emergent, entropic gravity due to ordinary matter and also due to the interplay between dark energy and ordinary matter.  He modeled the dark energy as responding like an elastic medium when it is displaced within the vicinity of matter. Using this analogy with elasticity, he derived an extra acceleration as proportional to the square root of the product of the usual Newtonian acceleration and a term related to the speed of light divided by the universe’s age. This leads to a 1/r force law for the extra component since Newtonian acceleration goes as 1/r².

g _D = sqrt  {(a_0 \cdot g_B / 6 )}

Verlinde’s dark gravity depends on the square root of the product of a characteristic acceleration a0 and ordinary Newtonian (baryonic) gravity, gB

The idea is that the elastic, dark energy medium, relaxes over a cosmological timescales. Matter displaces energy and entropy from this medium, and there is a back reaction of the dark energy on matter that is expressed as a volume law entropy. Verlinde is able to show that this interplay between the matter and dark energy leads precisely to the characteristic acceleration is a_0 / 6 = c \cdot H / 6 , where H is the Hubble expansion parameter and is equal to one over the age of the universe for a dS universe. This turns out be the right value of just over 10^{-10} m/s² that matches observations.

In our solar system, and indeed in the central regions of galaxies, we see gravity as the interplay of ordinary matter and other ordinary matter. We are not used to this other dance.

Domains of gravity

Acceleration

Domain Gravity vis-a-vis Newtonian formula

Examples

High (GM/R ~ c²) Einstein, general relativity Higher

Black holes, neutron stars

Normal Newtonian dynamics 1/r² Solar system, Sun orbit in Milky Way

Very low (< c/ age of U.)

Dark Gravity Higher, additional 1/r term Outer edges of galaxies, dwarf galaxies, clusters of galaxies

The table above summarizes three domains for gravity: general relativity, Newtonian, and dark gravity, the latter arising at very low accelerations. We are always calculating gravity incorrectly! Usually, such as in our solar system, it matters not at all. For example at the Earth’s surface gravity is 11 orders of magnitude greater than the very low acceleration domain where the extra term kicks in.

Recently, Alexander Peach, a Teaching Fellow in physics at Durham University, has taken a different angle based on Verlinde’s original, and much simpler, exposition of his emergent gravity theory in his 2010 paper. He derives an equivalent result to Verlinde’s in a way which I believe is easier to understand. He assumes that holography (the assumption that all of the entropy can be calculated as area law entropy on a spherical screen surrounding the mass) breaks down at a certain length scale. To mimic the effect of dark energy in Verlinde’s new hypothesis, Peach adds a volume law contribution to entropy which competes with the holographic area law at this certain length scale. And he ends up with the same result, an extra 1/r entropic force that should be added for correctness in very low acceleration domains.

Peach.fig2.jpeg

In figure 2 (above) from Peach’s paper he discusses a test particle located beyond a critical radius r_c for which volume law entropy must also be considered. Well within r_c  (shown in b) the dark energy is fully displaced by the attracting mass located at the origin and the area law entropy calculation is accurate (indicated by the shaded surface). Beyond r_c the dark energy effect is important, the holographic screen approximation breaks down, and the volume entropy must be included in the contribution to the emergent gravitational force (shown in c). It is this volume entropy that provides an additional 1/r term for the gravitational force.

Peach makes the assumption that the bulk and boundary systems are in thermal equilibrium. The bulk is the source of volume entropy. In his thought experiment he models a single bit of information corresponding to the test particle being one Compton wavelength away from the screen, just as Verlinde initially did in his description of emergent Newtonian gravity in 2010. The Compton wavelength is equal to the wavelength a photon would have if its energy were equal to the rest mass energy of the test particle. It quantifies the limitation in measuring the position of a particle.

Then the change in boundary (screen) entropy can be related to the small displacement of the particle. Assuming thermal equilibrium and equipartition within each system and adopting the first law of thermodynamics, the extra entropic force can be determined as equal to the Newtonian formula, but replacing one of the r terms in the denominator by r_c .

To understand r_c , for a given system, it is the radius at which the extra gravity is equal to the Newtonian calculation, in other words, gravity is just twice as strong as would be expected at that location. In turn, this traces back to the fact that, by definition, it is the length scale beyond which the volume law term overwhelms the holographic area law.

It is thus the distance at which the Newtonian gravity alone drops to about 1.2 \cdot 10^{-10} m/s², i.e. c \cdot H / 6 , for a given system.

So Peach and Verlinde use two different methods but with consistent assumptions to model a dark gravity term which follows a 1/r force law. And this kicks in at around 10^{-10} m/s².

The ingredients introduced by Peach’s setup may be sufficient to derive a covariant theory, which would entail a modified version of general relativity that introduces new fields, which could have novel interactions with ordinary matter. This could add more detail to the story of covariant emergent gravity already considered by Hossenfelder (2017), and allow for further phenomenological testing of emergent dark gravity. Currently, it is not clear what the extra degrees of freedom in the covariant version of Peach’s model should look like. It may be that Verlinde’s introduction of elastic variables is the only sensible option, or it could be one of several consistent choices.

With Peach’s work, physicists have taken another step in understanding and modeling dark gravity in a fashion that obviates the need for dark matter to explain our universe

We close with another of John Wheeler’s sayings:

“The only thing harder to understand than a law of statistical origin would be a law that is not of statistical origin, for then there would be no way for it—or its progenitor principles—to come into being. On the other hand, when we view each of the laws of physics—and no laws are more magnificent in scope or better tested—as at bottom statistical in character, then we are at last able to forego the idea of a law that endures from everlasting to everlasting. “

It is a pleasure to thank Alexander Peach for his comments on, and contributions to, this article.

References:

https://darkmatterdarkenergy.com/2018/08/02/dark-acceleration-the-acceleration-discrepancy/ blog “Dark Acceleration: The Acceleration Discrepancy”

https://arxiv.org/abs/gr-qc/9504004 “Thermodynamics of Spacetime: The Einstein Equation of State” 1995, Ted Jacobson

https://darkmatterdarkenergy.com/2017/07/13/dark-energy-and-the-comological-constant/ blog “Dark Energy and the Cosmological Constant”

https://darkmatterdarkenergy.com/2016/12/30/emergent-gravity-verlindes-proposal/ blog “Emergent Gravity: Verlinde’s Proposal”

https://arxiv.org/pdf/1806.10195.pdf “Emergent Dark Gravity from (Non) Holographic Screens” 2018, Alexander Peach

https://arxiv.org/pdf/1703.01415.pdf “A Covariant Version of Verlinde’s Emergent Gravity” Sabine Hossenfelder

Advertisements

Dark Energy and the Cosmological Constant

I am seeing a lot of confusion around dark energy and the cosmological constant. What are they? Is gravity always attractive? Or is there such a thing as negative gravity or anti-gravity?

First, what is gravity? Einstein taught us that it is the curvature of space. Or as famous relativist John Wheeler wrote “Matter tells space how to curve, and curved space tells matter how to move”.

Dark Energy has been recognized with the Nobel Prize for Physics, so its reality is accepted. There were two teams racing against one another and they found the same result in 1998: the expansion of the universe is accelerating!

Normally one would have thought it would be slowing down due to the matter within; both ordinary and dark matter would work to slow the expansion. But this is not observed for distant galaxies. One looks at a certain type of supernova that always has a certain mass and thus the same absolute luminosity. So the apparent brightness can be used to determine the luminosity distance. This is compared with the redshift that provides the velocity of recession or velocity-determined distance in accordance with Hubble’s law.

A comparison of the two types of distance measures, particularly for large distances, shows the unexpected acceleration. The most natural explanation is a dark energy component equal to twice the matter component, and that matter component would include any dark matter. Now do not confuse dark energy with dark matter. The latter contributes to gravity in the normal way in proportion to its mass. Like ordinary matter it appears to be non-relativistic and without pressure.

Einstein presaged dark energy when he added the cosmological constant term to his equations of general relativity in 1917. He was trying to build a static universe. It turns out that such a model is unstable, and he later called his insertion of the cosmological constant a blunder. A glorious blunder it was, as we learned eight decades later!

Here is the equation:

G_{ab}+\Lambda g_{ab} = {8\pi G \over c^{4}}T_{ab}

The cosmological constant is represented by the Λ term, and interestingly it is usually written on the left hand side with the metric terms, not on the right hand side with the stress-energy (and pressure and mass) tensor T.

If we move it to the right hand side and express as an energy density, the term looks like this:

\rho  = {\Lambda \over8\pi G }

with \rho  as the vacuum energy density or dark energy, and appearing on the right it also takes a negative sign. So this is a suggestion as to why it is repulsive.

The type of dark energy observed in our current universe can be fit with the simple cosmological constant model and it is found to be positive. So if you move \Lambda to the other side of the equation, it enters negatively.

Now let us look at dark energy more generally. It satisfies an equation of state defined by the relationship of pressure to density, with P as pressure and ρ denoting density:

P = w \cdot \rho \cdot c^2

Matter, whether ordinary or dark, is to first order pressureless for our purposes, quantified by its rest mass, and thus takes w = 0. Radiation it turns out has w = 1/3. The dark energy has a negative w, which is why you have heard the phrase ‘negative pressure’. The simplest case is w = -1, which the cosmological constant, a uniform energy density independent of location and age of the universe. Alternative models of dark energy known as quintessence can have a larger w, but it must be less than -1/3.

275px-EquationofState.gif

Credit: http://www.scholarpedia.org/article/Cosmological_constant

Why less than -1/3? Well the equations of general relativity as a set of nonlinear differential equations are usually notoriously difficult to solve, and do not admit of analytical solutions. But our universe appears to be highly homogeneous and isotropic, so one can use a simple FLRW spherical metric, and in this case one end up with the two Friedmann equations (simplified by setting c =1).

\ddot a/a  = - {4 \pi  G \over 3} ({\rho + 3 p}) + {\Lambda \over 3 }

This is for a (k = 0) flat on large scales universe as observed. Here \ddot a is the acceleration (second time derivative) of the scale factor a. So if \ddot a is positive, the expansion of the universe is speeding up.

The \Lambda term can be rewritten using the dark energy density relation above. Now the equation needs to account for both matter (which is pressureless, whether it is ordinary or dark matter) and dark energy. Again the radiation term is negligible at present, by four orders of magnitude. So we end up with:

\ddot a/a  = - {4 \pi  G \over 3} ({\rho_m + \rho_{de} + 3 p_{de}})

Now the magic here was in the 3 before the p. The pressure gets 3 times the weighting in the stress-energy tensor T. Why, because energy density is just there as a scalar, but pressure must be accounted for in each of the 3 spatial dimensions. And since p for dark energy is negative and equal to the dark energy density (times the square of the speed of light), then

\rho + 3 p is always negative for the dark energy terms, provided w < -1/3. That unusual behavior is why we call it ‘dark energy’.

Overall it is a battle between matter and dark energy density on the one side, and dark energy pressure (being negative and working oppositely to how we ordinarily think of gravity) on the other. The matter contribution gets weaker over time, since as the universe expands the matter becomes less dense by a relative factor of (1=z)^3 , that is the matter was on average denser in the past by the cube of one plus the redshift for that era.

Dark energy eventually wins out, because it, unlike matter does not thin out with the expansion. Every cubic centimeter of space, including newly created space with the expansion has its own dark energy, generally attributed to the vacuum. Due to the quantum uncertainty (Heisenberg) principle, even the vacuum has fields and non zero energy.

Now the actual observations at present for our universe show, in units of the critical density that

\rho_m \approx 1/3

\rho_{de} \approx 2/3

and thus

p_{de} \approx - 2

And the sum of them all is around -1, just coincidentally. Since there is a minus sign in front of the whole thing, the acceleration of the universe is positive. This is all gravity, it is just that some terms take the opposite side. The idea that gravity can only be attractive is not correct.

If we go back in time, say to the epoch when matter still dominated with \rho_m \approx 2/3 and  \rho_{de} \approx 1/3 , then the total including pressure would be 2/3 +1/3 – 1, or 0.

That would be the epoch when the universe changed from decelerating to accelerating, as dark energy came to dominate. With our present cosmological parameters, it corresponds to a redshift of z \approx 0.6, and almost 6 billion years ago.

Image: NASA/STScI, public domain


Gravitational Waves and Dark Matter, Dark Energy

What does the discovery of gravitational waves imply about dark matter and dark energy?

The first detection of gravitational waves results from a pair of merging black holes, and is yet another magnificent confirmation of the theory of general relativity. Einstein’s theory of general relativity has passed every test thrown at it during the last 100 years.

While the existence of gravitational waves was fully expected to be confirmed, the discovery took several decades and represents a technological tour de force. Detected at the two LIGO sites, one in Louisiana and one in Washington State, the main event lasted only 0.2 seconds, and was seen as a change of length in the “arms” of the detector (laser interferometers) of only one part in a thousand billion billion.

LIGO signal 2

The LIGO detection of gravitational waves. The blue curve is from the Louisiana site and the red curve from the Washington state site. The two curves are shifted by 7 milliseconds to account for the speed-of-light delay between the two sites. Note that most of the power in the signal occurs within less than 0.2 seconds. The strain is a measure of proportional change in length of the detector arm and is less than 1 part in 10²¹.

Nevertheless, this is the most energetic event ever seen by mankind. The merger of two large black holes totaling over 60 times the Sun’s mass resulted in the conversion of 3 solar masses of material into gravitational wave energy. Imagine, there were 3 Suns worth of matter obliterated in the blink of an eye. During this brief period, the generated power was greater than that from the light of all of the stars of all of the galaxies in our known universe.

What the discovery of gravitational waves has to say about dark matter and dark energy is essentially that it further confirms their existence.

Although there is as of now no direct detection of dark matter, we infer the existence of dark matter by using the equations of general relativity (GR), in a number of cases, including:

  1. Gravitational lensing – Typically, a foreground cluster of galaxies distorts and magnifies the image of a background galaxy. GR is used to calculate the bending and magnification, primarily caused by the dark matter in the foreground cluster.
  2. Cosmic microwave background radiation (CMBR) – The CMBR has spatial fluctuation peaks (harmonics) and the first peak tells us about ordinary matter and the third peak about the density of dark matter. A GR-based cosmological model is used to determine the dark matter average density.

Dark matter is also inferred from the way in which galaxies rotate and from the velocities of galaxies within galaxy clusters, but general relativity is not needed to calculate the dark matter densities in such cases. However, results from these methods are consistent with results from the methods listed above.

In the case of dark energy, it turns out to be a parameter in the equations of general relativity as first formulated by Einstein. The parameter, lambda, (Λ) is known as the cosmological constant, and represents the minimum energy of the vacuum. For many years astronomers and cosmologists thought it might take the value of zero. However in 1998 multiple teams confirmed that the value is positive and not zero, and it turns out that dark energy has more than twice the energy content of dark matter. Its non-zero value is actually another stunning success for general relativity.

Thus the detection of gravitational waves indirectly provides further support for the canonical cosmological model ΛCDM, with both dark matter and dark energy, and fully consistent with general relativity.

References

http://www.sciencemag.org/news/2016/02/gravitational-waves-einstein-s-ripples-spacetime-spotted-first-time – ScienceMag article

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 – Published 11 February 2016 – http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102

NEW BOOK just released:

S. Perrenod, 2016, 72 Beautiful Galaxies (especially designed for iPad, iOS; ages 12 and up)

Andromeda_galaxy_Galex