Category Archives: Early Universe

Black Holes* as a possible source of Universal Dark Energy

Previously I have written about the possibility of primordial black holes as the explanation for dark matter, and on the observational constraints around such a possibility. 

But maybe it is dark energy, not dark matter, that black holes explain. More precisely,  it would be dark energy stars (or gravatars, or GEODEs) that are observationally similar to black holes.

Dark energy

Dark energy is named thusly because it has negative pressure. There is something known as an equation of state that relates pressure to energy density. For normal matter, or for dark matter, the coefficient of the relationship, w, is zero or slightly positive, and for radiation it is 1/3.

If it is non-zero and positive then the fluid component loses energy as the universe expands, and for radiation, this means there is a cosmological redshift. The redshift is in proportion to the universe’s linear scale factor, which can be written as the inverse of the cosmological redshift plus one, by normalizing it to the present-day scale. The cosmological redshift is a measure of the epoch as well, currently z = 0, and the higher the redshift the farther we look back into the past, into the earlier years of the universe. Light emitted at frequency ν is shifted to lower frequency (longer wavelength) ν’ = ν / (1 + z).

Since 1998, we have known that we live in a universe dominated by dark energy (and its associated dark pressure, or negative pressure). The associated dark pressure outweighs dark energy by a factor of 3 because it appears 3 times, once for each spatial component in Einstein’s stress-energy tensor equations of general relativity.

Thus dark energy contributes a negative gravity, or expansion acceleration, and we observe that our universe has been accelerating in its expansion for the past 4 or 5 billion years, since dark energy now provides over 2/3 of the universal energy balance. Dark matter and ordinary matter together amount to just less than 1/3 of the average rest-mass energy density.

If w is less than -1/3 for some pervasive cosmological component, then you have dark energy behavior for that component, and in our universe today over the past several billion years, measurements show w = -1 or very close to it. This is the cosmological constant case where dark energy’s negative pressure has the same magnitude but the opposite sign of the positive dark energy density. More precisely, the dark pressure is the negative of the energy density times the speed of light squared.

Non-singular black holes

There has been consideration for decades of other types of black holes that would not have a singularity at the center. In standard solutions of general relativity black holes have a central singular point or flat zone, depending on whether their angular momentum is zero or positive.

For example a collapsing neutron star overwhelms all pressure support from neutron degeneracy pressure once its mass exceeds the TOV limit at about 2.7 solar masses (depending on angular momentum), and forms a black hole that is often presumed to collapse to a singularity.

But when considering quantum gravity, and quantum physics generally, then there should be some very exotic behavior at the center, we just don’t know what. Vacuum energy is one possibility.

For decades various proposals have been made for alternatives to a singularity, but the problem has been observationally intractable. A Soviet cosmologist Gliner, who was born just 100 years ago in Kyiv, and who only passed away in 2021, proposed the basis for dark energy stars and a dark energy driven cosmology framework in 1965 (in English translation, 1966).

E. Gliner, early 1970s in St. Petersburg, courtesy Gliner family

He defended his Ph.D. thesis in general relativity including dark energy as a component of the stress-energy tensor in 1972. Gliner emigrated to the US in 1980.

The essential idea is that the equation of state for compressed matter changes to that of a material (or “stuff”) with a fully negative pressure, w = -1 and thus that black hole collapse would naturally result in dark energy cores, creating dark energy stars or gravatars rather than traditional black holes. The cores could be surrounded with an intermediate transition zone and a skin or shell of normal matter (Beltracchi and Gondolo 2019). The dark energy cores would have negative pressure.

Standard black hole solution is incomplete

Normally black hole physics is attacked with Kerr (non-zero angular momentum) or Schwarzschild (zero angular momentum) solutions. But these are incomplete, in that they assume empty surroundings. There is no matching of the solution to the overall background which is a cosmological solution. The universe tracks an isotropic and homogeneous (on the largest scales) Lambda-cold dark matter (ΛCDM) solution of the equations of general relativity. Since dark energy now dominates, it is approaching a de Sitter exponential runaway, whereas traditional black hole solutions with singularities are quite the opposite, known as anti-de Sitter.

We have no general solution for black hole equations including the backdrop of an expanding universe. The local Kerr solution for rotating black holes that is widely used ignores the far field. Really one should match the two solution regimes, but there has been no analytical solution that does that; black hole computations are very difficult in general, even ignoring the far field.

In 2019, Croker and Weiner of the University of Hawaii found a way to match a model of dark energy cores to the standard ΛCDM cosmology, and demonstrate that for w = -1 that dark energy stars (black holes with dark energy cores) would have masses that grow in proportion to the cube of the universe’s linear scale factora, starting immediately from their initial formation at high redshifts. In effect they are forced to grow their masses and expand (with their radius proportional to mass as for a black hole) by all of the other dark energy stars in the universe acting in a collective fashion. They call this effect, cosmological coupling of the dark energy star gravity to the long-range and long-term cosmological gravitational field.

This can be considered a blueshift for mass, as distinguished from the energy or frequency redshift we see with radiation in the cosmos.

Their approach potentially addresses several problems: (1) an excess of larger galaxies and their supermassive black holes seen very early on in the recent James Webb Space Telescope data, (2) more intermediate mass black holes than expected, as confirmed from gravitational wave observations of black hole mergers, (see Coker, Zevin et al. 2021 for a possible explanation via cosmological coupling), and (3) possibly a natural explanation for all or a substantial portion of the dark energy in the universe, which has been assumed to be highly diffuse rather than composed primarily of a very large number of point sources.

Inside dark energy stars, the dark energy density would be many, many orders of magnitude higher than it is in the universe at large. But as we will see below, it might be enough to explain all of the dark energy budget of the ΛCDM cosmology.

M87* supermassive black hole (or dark energy star) imaged in polarized radio waves by the Event Horizon Telescope collaboration; signals are combined from a global collection of radio telescopes via aperture synthesis techniques. European Southern Observatory, licensed under a Creative Commons Attribution 4.0 International License

A revolutionary proposal

Here’s where it gets weird. A number of researchers have investigated the coupling of a black hole’s interior to an external expanding universe. In this case there is no singularity but instead a vacuum energy solution interior to the (growing) compact stellar remnant.

And one of the most favored possibilities is that the coupling causes the mass for all black holes to grow in proportion to the universe’s characteristic linear size a cubed, just as if it were a cosmological constant form of dark energy. This type of “stuff” retains equal energy density throughout all of space even as the space expands, as a result of its negative pressure with equation of state parameter w = -1.

Just this February a very interesting pair of papers has been published in The Astrophysical Journal (the most prestigious American journal for such work) by a team of astronomers from 9 countries (US, UK, Canada, Japan, Netherlands, Germany, Denmark, Portugal, and Cyprus), led by the University of Hawaii team mentioned above.

They have used observations of a large number of supermassive black holes and their companion galaxies out to redshift 2.5 (when the universe was less than 3 billion years of age) to argue that there is observable cosmologicalcouplingbetween the cosmological gravitational field at large and the SMBH masses, where they suppose those masses are dominated by dark energy cores.

Figure 1 from Farrah, Croker, et al. shows their measured cosmological coupling parameter k based on 3 catalogs (5 samples using different emission lines) of supermassive black holes contained in elliptical galaxies at high redshifts, 0.7 < z < 2.5. If k =3, that corresponds to the cosmological constant case with equation of state parameter w = -1.

Their argument is that the black hole* (or *dark energy star) masses have grown much faster than could be explained by the usual mechanism of accretion of nearby matter and mergers.

In Figure 1 from their second paper of the pair (Farrah, Croker, et al. 2023), they present their measurements of the strength of cosmological coupling for five different galaxy surveys (three sets of galaxies but two sets were surveyed at two frequencies each). They observed strong increases in the measured SMBH masses from redshifts close to z =1 and extending above z = 2. They derive a coupling strength parameter k that measures the power law index of how fast the black hole masses grow with redshift. 

Their reformulation of the black hole model to include the far field yields cosmological coupling of the dark energy cores. The mass of the dark energy core, coupled to the overall cosmological solution, results in a mass increase M ~ a^k , a power law of index k, depending on the equation of state for the dark energy. Here a is the cosmological linear scale factor of the universal expansion and is also equal to 1/(1+z) where z is the redshift at which a galaxy and its SMBH are observed. (The scale factor a is normalized to 1 presently, such that z = 0 now and is positive in the past).

And they are claiming that their sample of several hundred galaxies and supermassive black holes indicates k = 3, on average, more or less. So between z = 1 and z = 0, over the past 8 billion years, they interpret their observations as an 8-fold growth in black hole masses. And they say this is consistent with M growing by a^3 as the universe’s linear scale has doubled (a was 1/2 at z = 1). This implies they are measuring a different class of black holes than we normally think of, those don’t increase in mass other than by accretion and mergers. Normal black holes would yield k > 0 but not by much, based on expected accretion and mergers. The k = 0 case they state is excluded by their observations with over 99.9% confidence.

The set of upper graphs in Figure 1 is for the various surveys, and the large lower graph combines all of the surveys as a single data set. They find a near-Gaussian distribution, and k is centered near 3, with an uncertainty close to 1. There is a 2/3 chance that the value lies between 2.33 and 3.85, based on their total sample of over 400 active galaxy nuclei.

And they also suggest this effect would be for all dark energy dominated “black holes”, including stellar class and intermediate BHs, not just SMBHs. So they claim fast evolution in all dark energy star masses, in proportion to the volume growth of the expanding universe, and consistent with dark energy cores having an equation of state just like the observed cosmological constant.

Now it gets really interesting.

We already know that the dark energy density of the universe, unlike the ever-thinning mater and radiation density, is more or less constant in absolute terms. That is the cosmological constant, due to vacuumenergy, interpretation of dark energy for which the pressure is negative and causes acceleration of the universe’s expansion. Each additional volume of the growth has its own associated vacuum energy (around 4 proton masses’ worth of rest energy per cubic meter). This is the universe’s biggest free lunch since its original creation.

The authors focus on dark energy starts created during the earliest bursts of star formation. These are the so-called Pop III stars, never observed because all or mostly all have reached end of life long ago. When galaxy and star formation starts as early as about 200 million years after the Big Bang, there is only hydrogen and helium for atomic matter. Heavier elements must be made in those first Pop III stars. As a result of their composition, the first stars with zero ‘metallacity’ have higher stellar masses; high mass stars are the ones that evolve most rapidly and they quickly end up as white dwarfs, or more to the point here, black holes or neutron stars in supernovae events. Or, they end their lives as dark energy stars.

The number of these compact post supernova remnant stars will decrease in density in inverse proportion to the increasing volume of the expanding universe. But the masses of all those that are dark energy stars would increase as the cube of the scale factor, in proportion to the increasing volume.

And the net effect would be just right to create a cosmological constant form of dark energy as the total contribution of billions upon billions of dark energy stars. And dark energy would be growing as a background field from very early on. Regular matter and dark matter thin out with time, but this cohort would have roughly constant energy density once most of the first early rounds of star formation completed, perhaps by redshift z = 8, well within the first billion years. Consequently, dark energy cores, collectively, would dominate the universe within the last 4 or 5 billion years or so, as the ordinary and dark matter density fell off. And now its dominance keeps growing with time.

But is there enough dark energy in cores?

But is it enough? How much dark energy is captured in these dark energy stars, and can it explain the dominant 69% of the universe’s energy balance that is inferred from observations of distant supernovae, and from other methods?

The dark energy cores are presumably formed from the infall and extreme compression of ordinary matter, from baryons captured into the progenitors of these black hole like stars and being compressed to such a high degree that they are converted into a rather uniform dark energy fluid. And that dark energy fluid has the unusual property of negative pressure that prevents further compression to a singularity.

It is possible they could consume some dark matter, but ordinary matter clumps much more easily since it can radiate away energy via radiation, which dark matter does not do. Any dark matter consumption would only build their case here, but we know the overall dark matter ratio of 5:1 versus ordinary matter has not changed much since the cosmic microwave background emission after the first 380,000 years. 

We know from cosmic microwave background measurements and other observations, that the ordinary matter or baryon budget of the universe is just about 4.9%, we’ll call it 5% in round numbers. The rest is 69% dark energy, and 26% dark matter.

So the question is, how much of the 5% must be locked up in dark energy stars to explain the 69% dark energy dominance that we currently see?

Remember that with dark energy stars the mass grows as the volume of the universe grows, that is in proportion to (1 + z)3. Now dark energy stars will be formed at different cosmological redshifts, but let’s just ask what fraction of baryons would we need to convert, assuming all are formed at the same epoch. This will give us a rough feel for the range of when and of how much.

Table 1 looks at some possibilities. It asks what fraction of baryons need to collapse into dark energy cores, and we see that the range is from only about 0.2% to 1% of baryons are required. Those baryons are just 5% of the mass-energy of the universe, and only 1% or less of those are needed, because the mass expansion factors range from about 1000 to about 10,000 — 3 to 4 orders of magnitude, depending on when the dark energy stars form.

Table 1. The first column has the redshift (epoch) of dark energy star formation. In actuality it will happen over a broad range of redshifts, but the earliest stars and galaxies seem to have formed from around 200 to 500 million years after the Big Bang started. The second column has the mass expansion factor (1+z)3; the DE star’s gravitational mass grows by that factor from the formation z until now. The third column is the age of the universe at DE star formation. The fourth column tells us what fraction of all baryons need to be incorporated into dark energy cores in those stars (they could be somewhat more massive than that). The fifth column is the lower bound on their current mass if they never experience a merger or accretion of other matter. All in all it looks as if less than 1% of baryons convert to dark energy cores.

The fifth column shows the current mass of a minimal 3 solar mass dark energy star at present, noting that 3 solar masses is the lightest known black hole. There may be lighter dark energy stars, but not very much lighter than that, perhaps a little less than 2 solar masses. And the number density should be highest at the low end according to everything we know about star formation.

Now to some degree these are underestimates for the final mass, as shown in the fifth column, since there will be mergers and accretion of other matter into these stars, and of the two effects, the mergers are more important, but they support the general argument. If a dark energy star merges with a neutron star, or other type of black hole, the dark energy core gains in relative terms. So all of this is a plausibility argument that says if the formation is of dark energy stars of a few solar masses in the epoch from 200 to 500 million years after the Big Bang, that less than 1% of all baryons are needed. And it says that the final masses are well into the intermediate range of thousands or tens of thousands of solar masses, and yet they can hide out in galaxies or between galaxies with hundreds of billions of solar masses, only contributing a few percent to the total mass. 

Dark energy star cosmology 

Dark energy star cosmology needs to agree with the known set of cosmological observations. It has to provide all or a significant fraction of the total dark energy budget in order to be useful. It appears from simple arguments that it can meet the budget by conversion of a small percentage of the baryons in the universe to dark energy stars.

It should exhibit an equation of state w = -1 or nearly so, and it appears to do that. It should not contribute too much mass to upset our galaxy mass estimates. It does that and it does not appear to explain dark matter in any direct way.

Dark energy stars collectively could potentially fill that role. In the model described above it is their collective effects that are being modeled as a dark energy background field that in turn drives dark energy star cores to higher masses over time. Dark energy (as a global field) feeds on itself (the dark energy cores)!

There are some differences with the normal ΛCDM cosmology assumption of a highly uniform dark energy background, not one composed of a very large number of point sources. In particular the ΛCDM cosmology has the dark energy background there from the very beginning, but it is not significant until,the universe has expanded sufficiently.

With the dark energy star case it has to be built up, one dark energy core at a time. So the dark energy effects do not begin until redshifts less than say z = 20 to 30 and most of it may be built up by z = 8 to 10, within the first billion years.

In the dark energy star case we will have accretion of nearby matter including stars, and mergers with neutron stars, other dark energy stars, and other black hole types.

A merger with a neutron star or non dark energy star only increases the mass in dark energy cores; it is positive evolution in the aggregate dark energy core component. A merger of two dark energy stars will lose some of the collective mass in conversion to gravitational radiation, and is a negative contribution toward the overall dark energy budget.

One way to distinguish between the two cosmological models is to push our measurement of the strength of dark energy as far back as we can and look for variations. Another is to identify as many individual intermediate scale black holes / dark energy stars as we can from gravitational wave surveys and from detailed studies of globular clusters and dwarf galaxies.

What about dark matter?

Dark matter’s ratio to ordinary matter at the time of the cosmic microwave background emission is measured to be 5:1 and currently in galaxies and their rotation curves and in clusters of galaxies in their intracluster medium it is also seen to be around 5:1 on average. Since the dark energy cores in the Croker et al. proposal are created hundreds of millions of years after the cosmic microwave background era, then these dark energy stars can not be a major contribution to dark matter per se.

The pair of papers just published by the team doesn’t really discuss dark matter implications. But a previous paper by Croker, Runburg and Farrah (2020) explored the interaction between the dark energy bulk behavior of the global population of dark energy stars with cold dark matter and found little or no affect.

Their process converts a rather small percentage of baryons (or even some dark matter particles) into dark energy and its negative pressure. Such material couples differently to the gravitational field than dark matter, which like ordinary matter is approximately dust-like with an equation of state parameter w = 0.

In the 2020 paper they find that GEODEs or dark energy stars can be spread out even more than dark matter that dominates galaxy halos, or the intracluster medium in rich clusters of galaxies.

Prizes ahead?

This concept of cosmological coupling is one of the most interesting areas of observational and theoretical cosmology in this century. If this work by Croker and collaborators is confirmed the team will be winning prizes in astrophysics and cosmology, since it could be a real breakthrough in both our understanding of the nature of dark energy and our understanding of black hole physics.

In any case, Dark Energy Star already has its own song. 

Glossary

Black Hole: A dense collection of matter that collapses inside a small radius, and in theory, to a singularity, and which has sufficiently strong gravity that nothing, not even light, is able to escape. Black holes are characterized by three numbers: mass, angular momentum, and charge.

Cosmological constant: Einstein added this term, Λ, on the left hand side of the equations of general relativity, in a search for a static universe solution. It corresponds to an equation of state parameter w = -1. If the term is moved to the right hand side it becomes a dark energy source term in the stress-energy tensor.

Cosmological coupling: The coupling of local properties to the overall cosmological model. For example, photons redshift to lower energies with the expansion of the universe. It is argued that dark energy stellar cores would collectively couple to the overall Friedmann cosmology that matches the bulk parameters of the universe. In this case it would be a ‘blueshift’ style increase in mass in proportion to the growing volume of the universe, or perhaps more slowly.

Dark Energy: Usually attributed to energy of the vacuum, dark energy has a negative pressure in proportion to its energy density. It was confirmed by Nobel prize winning teams that dark energy is the dominant component of the universe’s mass-energy balance, some 69% of the critical value, and is driving an accelerated expansion with an equation of state w = -1 to within small errors.

Dark Energy Star: A highly compact object that should look like a black hole externally but has no singularity at its core. Instead it has a core of dark energy. If one integrates over all dark energy stars, it may add up to a portion or all of the universe’s dark energy budget. It should have a crust of ‘normal’ matter with anisotropic stress at the boundary with the core, or an intermediate transition zone with varying equation of state between the crust and the core.

Dark Matter: An unknown substance thought to reside in galactic halos, with 5 times as much matter density on average as ordinary matter. Dark matter does not interact electromagnetically and is typically considered to be particulate in nature, although primordial mini black holes have been suggested as one possible explanation.

Equation of state: The relationship between pressure and energy density, P = w * ρ * c^2 where P is pressure and can be negative, and ρ the energy density is positive. If w < -1/3 there is dark pressure, if w = -1 it is the simplest cosmological constant form. Dark matter or a collection of stars or galaxies can be modeled as w ~ 0.

GEODEs: GEneric Objects of Dark Energy, dark energy stars. Formation is thought to occur from Pop III stars, the first stellar generation, at epochs 30 > z > 8.

Gravastar: A stellar model that has a dark energy core and a very thin outer shell. With normal matter added there is anisotropic stress at the boundary to maintain pressure continuity from the core to the shell.

Non-singular black holes: A black hole like object with no singularity.

Primordial black holes: Black holes that may have formed in the very early universe, within the first second. Primordial dark energy stars in large numbers would be problematic, because they would grow in mass by (1 + z)^3 where z >> 1000. 

Vacuum energy: The irreducible energy of the vacuum state. The vacuum state is not empty, it is pervaded by fields and virtual particles that pop in and out of existence on very short time scales.

References

https://scitechdaily.com/cosmological-coupling-new-evidence-points-to-black-holes-as-source-of-dark-energy/ – Popular article about the research from University of Hawaii lead authors and collaborators 

https://www.phys.hawaii.edu/~kcroker/ – Kevin Croker’s web site at University of Hawaii

Beltracchi, P. and Gondolo, P. 2019, https://arxiv.org/abs/1810.12400 “Formation of Dark Energy Stars”

Croker, K.S. and Weiner J.L. 2019, https://dor.org/10.3847/1538-4357/ab32da “Implications of Symmetry and Pressure in Friedmann Cosmology. I. Formalism”

Croker, K.S., Nishimura, K.A., and Farrah D., 2020 https://arxiv.org/pdf/1904.03781.pdf, “Implications of Symmetry and Pressure in Friedmann Cosmology. II. Stellar Remnant Black Hole Mass Function”

Croker, K.S., Runburg, J., and Farrah D., 2020 https://doi.org/10.3847/1538-4357/abad2f “Implications of Symmetry and Pressure in Friedmann Cosmology. III. Point Sources of Dark Energy that tend toward Uniformity”

Croker, K.S., Zevin, M.J., Farrah, D., Nishimura, K.A., and Tarle, G. 2021, “Cosmologically coupled compact objects: a single parameter model for LIGO-Virgo mass and redshift distributions” https://arxiv.org/pdf/2109.08146.pdf

Farrah, D., Croker, K.S. et al. 2023 February, https://iopscience.iop.org/article/10.3847/2041-8213/acb704/pdfObservational Evidence for Cosmological Coupling of Black Holes and its Implications for an Astrophysical Source of Dark Energy” (appeared in Ap.J. Letters 20 February, 2023)

Farrah, D., Petty S., Croker K.S. et al. 2023 February, https://doi.org/10.3847/1538-4357/acac2e “A Preferential Growth Channel for Supermassive Black Holes in Elliptical Galaxies at z <~ 2”

Ghezzi, C.R. 2011, https://arxiv.org/pdf/0908.0779.pdf “Anisotropic dark energy stars”

Gliner, E.B. 1965, Algebraic Properties of the Energy-momentum Tensor and Vacuum-like States of Matter. ZhTF 49, 542–548. English transl.: Sov. Phys. JETP 1966, 22, 378.

Harikane, Y., Ouchi, M., et al. arXiv:2208.01612v3, “A Comprehensive Study on Galaxies at z ~ 9 – 16 Found in the Early JWST Data: UV Luminosity Functions and Cosmic Star-Formation History at the Pre-Reionization Epoch”

Perrenod, S.C. 2017, “Dark Energy and the Cosmological Constant” https://darkmatterdarkenergy.com/2017/07/13/dark-energy-and-the-comological-constant/ 

Whalen, D.J., Even, W. et al.2013, doi:10.1088/004-637X/778/1/17, “Supermassive Population III Supernovae and the Birth of the first Quasars”

Yakovlev, D. and Kaminker, A. 2023, https://arxiv.org/pdf/2301.13150.pdf “Nearly Forgotten Cosmological Concept of E.B. Gliner”


Hexaquark Dark Matter: Bosons, but not WIMPy at all

Dibaryons

Imagine you smash a proton and neutron together. What do you get? Typically you get a deuteron which is the nucleus of deuterium, heavy hydrogen. Deuterium has one electron in its neutral atomic state. And it has two baryons, the proton and neutron, so it is known as a dibaryon.

Now as you have heard, protons and neutrons are really quark triplets, held together by gluons in bound configurations. A proton has two up quarks (electric charge +2/3) and a down quark (charge -1/3) for a net charge of +1 and a neutron has two down quarks and an up quark for a net charge of 0.

These are the two lightest quarks and protons and neutrons are by far the dominant components in the ordinary matter in the universe, mostly as hydrogen and helium.

Quarks, protons, and neutrons are all fermions, particles with half-integer spins (1/2, 3/2, -1/2, etc.).

The other main class of particles is called bosons, and that class includes photons, gluons, the W and Z of the weak interaction, and the never directly observed graviton. They all have integer spins (typically 1, but 0 for the Higgs boson, and 2 for the graviton).

752px-Standard_Model_of_Elementary_Particles.svg

Figure 1: The Standard Model major particles: quarks (purple), leptons (green), force carrier bosons (orange), Higgs boson (yellow) with mass, charge, spin indicated.

Six quarks in a Bag

Suppose you collided a proton and neutron together, each with three quarks, and you ended up with a single six quark particle that was stable. It would be a more exotic type of dibaryon. It would have three up quarks, three down quarks, and it would not be a fermion. It would be a boson, with integer spin, spin 0 or 1, in this case. It would be six quarks in a bag, a bound state held together by gluons.

sixquarksinabag

Figure 2. Six quarks in a bag, a hexaquark

Hexaquark2380

Figure 3. The d* resonance at 2.38 GeV, observed at the Cooler Synchrotron in Julich, Germany

Such a particle has been discovered in the past decade, and is named the d* hexaquark. It is seen as the resonance in Figure 3 above, found in proton-neutron collisions, and has a mass of 2.38 GeV (for reference the proton mass is 0.935 GeV and the neutron mass is 0.938 GeV). It decays to a deuteron and two pions, either neutral as shown in the figure, or charged pions.

It is also possible to produce a d* by irradiating a deuteron with a gamma ray.

The d* was already predicted by the famed mathematician and physicist Freeman Dyson in 1964, working with his collaborator Xuong. Their mass estimate was quite close at 2.35 GeV, using a simple quark model.

Dyson just passed away recently; you may have heard of his Dyson sphere concept. The idea is that an advanced civilization would build a sphere of solid material surrounding its star in order to hold an extremely large population and absorb virtually all of the star’s energy. Larry Niven modified this to a ring in his 1970 sci-fi novel Ringworld.

Hexaquark dark matter

Azizi, Ageav, and Sundu have recently suggested a hexaquark of the form uuddss, that is, two up, two down, and two strange quarks. Their mass estimate is around 1.2 GeV, half that of the d* composed of only up and down quarks. It is expected to be stable with long lifetime.

And also recently, Bashkanov and Watts at the University of York have made a nice proposal that d* could be the dark matter particle. The d* particle is itself unstable, but they propose that stable condensates with many d* particles could form. Their paper,  “A New Possibility for Light-Quark Dark Matter” is here:

https://iopscience.iop.org/article/10.1088/1361-6471/ab67e8/pdf

The d* has one great advantage over the other proposed particles, it has actually been discovered! The d* has a good sized mass for a dark matter candidate, at about 2.5 times the mass of the proton.

The authors find that the d* could form lengthy chains or spherical condensates with thousands to millions of d* particles. Unlike individual d* particles, the condensates could be stable ‘super atoms’ lasting for billions of years.

However to make this work the binding energy would have to exceed the difference between the 2.38 GeV d* mass and the deuteron mass of 2.014mGeV, thus would have to be greater than about 0.4 GeV.

The d* would be produced thermally when the universe was at temperatures in the range from 1 to 3 trillion Kelvins. The condensates would need to form quickly before individual d* particles of short lifetimes decayed away.

The favored candidates for dark matter have been WIMPs, supersymmetric particles. But no supersymmetric particle has ever been detected at the Large Hadron Collider or elsewhere, which is incredibly disappointing for many particle physicists. The other main candidates have been the axion and sterile neutrino, both quite low in mass. These have never been directly detected either; they remain hypothetical.

The d* particle is a boson, and the authors’ theoretical approach is that in the early universe as it cooled, both baryons and dibaryonic matter froze out. The baryons ended up, after the cosmic nucleosynthesis phase as protons, deuterium dibaryons, and helium nuclei (alpha particles, that are composed essentially of two deuterons), the main constituents of ordinary matter.

What would happen to d* under the early conditions of the Big Bang? Bosons like to clump together, into something called Bose-Einstein condensates. Yes, that Einstein. And that Boson. Bose-Einstein statistics were developed in the 1920s and govern the statistics of bosons (integer spin particles), and differ from that of fermions.

To confirm this model would require astronomical observations or cosmic ray observations. Decays of d* particles could result in gamma ray production with energies up to 0.5 GeV. Their decay products might also be seen as upward moving cosmic rays, in Earth-bound cosmic ray experiments. These would be seen coming up through the Earth, unlike normal cosmic rays that cannot penetrate so much ordinary matter, and the decay events would result in gamma rays, nucleons and deuterons, as well as pions as the decay products.

 

Additional reference: http://www.sci-news.com/physics/dark-matter-particle-d-star-hexaquark-08188.html


Does Dark Energy Vary with Time?

Einstein introduced the concept of dark energy 100 years ago.

The Concordance Lambda-Cold Dark Matter cosmology appears to fit observations of the cosmic microwave background and other cosmological observations including surveys of large-scale galaxy grouping exceedingly well.

In this model, Lambda is shorthand for the dark energy in the universe. It was introduced as the greek letter Λ into the equations of general relativity, by Albert Einstein, as an unvarying cosmological constant.

Measurements of Λ indicate that dark energy accounts for about 70% of the total energy content of the universe. The remainder is found in dark matter and ordinary matter, and about 5/6 of that is in the form of dark matter. 

Alternative models of gravity, with extra gravity in very low acceleration environments, may replace apparent dark matter with this extra gravity, perhaps due to interaction between dark energy and ordinary matter.

The key point about dark energy is that while it has a positive energy, it rather strangely has a negative pressure. In the tensor equations of general relativity the pressure terms act as a negative gravity, driving an accelerated expansion of the universe.

In fact our universe is headed toward a state of doubling in scale in each dimension every 11 or 12 billion years. In the next trillion years we are looking at 80 or 90 such repeated doublings.

That assumes that dark energy is constant per volume over time, with a value equivalent to two proton – antiproton pair annihilations per cubic meter (4 GeV / m³).

But is it?

The Dark Energy Survey results seem to say so. This experiment looked at 26 million galaxies for the clustering patterns, and also gravitational lensing (Einstein taught us that mass bends light paths).

They determined the parameter w for dark energy and found it to be consistent with -1.0 as expected for the cosmological constant model of unvarying dark energy. See this blog for details:

https://darkmatterdarkenergy.com/2017/08/10/dark-energy-survey-first-results-canonical-cosmology-supported/

The pressure – energy density relation is:

P = w \cdot \rho \cdot c^2

The parameter w elucidates the relation between the energy density given by ρ and the pressure P. This is called the equation of state. Matter and radiation have w >= 0. In order to have dark energy with a negative pressure dominating, then w should be < -1/3. And w = -1 gives us the cosmological constant form.

EquationofStateImage credit: www.scholarpedia.org

Cosmologists seek to determine w, and whether it varies over time scales of billions of years.

The Concordance model is not very well tested at high redshifts with z > 1 (corresponding to epochs of the universe less than half the current age) other than with the cosmic microwave background data. Recently two Italian researchers, Risaliti and Lusso have examined datasets of high-redshift quasars to investigate whether the Concordance model fits.

Typically supernovae are employed for the redshift-distance relation, and cosmological models are tested against the observed relationship, known as the Hubble diagram. The authors use X-ray and ultraviolet fluxes of quasars to extend the diagram to high redshifts (greater distances, earlier epochs), and calibrate observed quasar luminosities with the supernovae data sets.

Their analysis drew from a sample of 1600 quasars with redshifts up to 5 and including a new sample of 30 high redshift z ~ 3 quasars, observed with the European XMM-Newton satellite.

They claim a 4 standard deviation variance for z > 2, a reasonably high significance.

Models with a varying w include quintessence models, with time-varying scalar fields. If w decreases below -1, it is known as phantom energy. Their results are suggestive of a value of w < -1, corresponding to a dark or phantom energy increasing with time.

For convenience cosmologists introduce a second parameter for possible evolution in w, writing as:

     w = w0 + wa*(1-a)   ,where a, the scale factor equals 1/(1+z) and a = 1 for present day.

darkenergyvaries.fig4

The best fit results for their analysis are with w0 = -1.4 and wa ~ 1, but these results have large errors, as shown in Figure 4 above, from their paper. Their results are within the red (2 standard deviation, or σ) and orange (3σ) contours. The outer 3σ contours almost touch the cosmological constant point that has w0 = -1 and wa = 0.

These are intriguing results that require further investigation. They are antithetical to quintessence models, and apparently in tension with a simple cosmological constant.

The researchers plan on further analysis in future work by including Baryon Acoustic Oscillation (large scale galaxy clustering) measurements at z > 2.

References

https://darkmatterdarkenergy.com/2017/08/10/dark-energy-survey-first-results-canonical-cosmology-supported/ – Results from Dark Energy Survey of galaxies

Risaliti, G. and Lusso, E. 2018 Cosmological constraints from the Hubble diagram of quasars at high redshifts https://arxiv.org/abs/1811.02590

 

 


Dark Ages, Dark Matter

Cosmologists call the first couple of hundred million years of the universe’s history the Dark Ages. This is the period until the first stars formed. The Cosmic Dawn is the name given to the epoch during which these first stars formed.

Now there has been a stunning detection of the 21 centimeter line from neutral hydrogen gas in that era. Because the first stars are beginning to form, their radiation induces the hyperfine transition for electrons in the ground state orbitals of hydrogen. This radiation undergoes a cosmological expansion of around a factor of 18 since the era of the Cosmic Dawn. By the time it reaches us, instead of being at the laboratory frequency of 1420 MHz, it is at around 78 MHz.

This is a difficult frequency at which to observe, since the region of spectrum is between the TV and FM bands in the U.S. and instrumentation itself is a source of radio noise. Very remote, radio quiet, sites are necessary to minimize interference from terrestrial sources, and the signal must be picked out from a much stronger cosmic background.

EDGES-2.jpg

 

Image credit: CSIRO-Australia and EDGES collaboration, MIT and Arizona State University. EDGES is funded by the National Science Foundation.

This detection was made in Western Australia with a radio detector known as EDGES, that is sensitive in the 50 to 100 MHz range. It is surprisingly small, roughly the size of a large desk. The EDGES program is a collaboration between MIT and Arizona State University.

The researchers detected an absorption feature beginning at 78 MHz, corresponding to a redshift of 17.2 (1420/78 = 18.2 = 1 + z, where z is redshift) and for  the canonical cosmological model it corresponds to an age of the universe of 180 million years.

The absorption feature is much stronger than expected from models, implying a lower gas temperature than expected.

At that redshift the cosmic microwave background temperature is at 50 Kelvins (at the present era it is only 2.7 Kelvins). The neutral hydrogen feature is seen in absorption against the warmer cosmic microwave background, and is much cooler (both its ‘spin’ and ‘kinetic’ temperatures).

This neutral hydrogen appears to be at only 3 Kelvins. Existing models had the expectation that it would be at around 7 Kelvins or even higher. (A Kelvin degree equals a Celsius degree, but has its zero point at absolute zero rather than water’s freezing temperature).

In a companion paper, it has been proposed that interactions with dark matter kept the hydrogen gas cooler than expected. This would require an interaction cross section between dark matter and ordinary matter (non- gravitational interaction, perhaps due to the weak force) and low velocities and low masses for dark matter particles. The mass should be only a few GeV (a proton rest mass is .94 GeV). Most WIMP searches in Earth-based labs have been above 10 GeV.

These results need to be confirmed by other experiments. And the dark matter explanation is speculative. But the door has been opened for Cosmic Dawn observations of neutral hydrogen as a new way to hunt for dark matter.

References:

“A Surprising Chill before the Cosmic Dawn” https://www.nature.com/articles/d41586-018-02310-9

EDGES science: http://loco.lab.asu.edu/edges/edges-science/

EDGES array and program: https://www.haystack.mit.edu/ast/arrays/Edges/

R. Barkana 2018, “Possible Interactions between Baryons and Dark Matter Particles Revealed by the First Stars” http://www.nature.com/articles/nature25791


Distant Galaxy Rotation Curves Appear Newtonian

One of the main ways in which dark matter was postulated, primarily in the 1970s, by Vera Rubin (recently deceased) and others, was by looking at the rotation curves for spiral galaxies in their outer regions. Although that was not the first apparent dark matter discovery, which was by Fritz Zwicky from observations of galaxy motion in the Coma cluster of galaxies during the 1930s.

Most investigations of spiral galaxies and star-forming galaxies have been relatively nearby, at low redshift, because of the difficulty in measuring these accurately at high redshift. For what is now a very large sample of hundreds of nearby galaxies, there is a consistent pattern. Galaxy rotation curves flatten out.

M64

M64, image credit: NASA, ESA, and the Hubble Heritage Team (AURA/STScI)

If there were only ordinary matter one would expect the velocities to drop off as one observes the curve far from a galaxy’s center. This is virtually never seen at low redshifts, the rotation curves consistently flatten out. There are only two possible explanations: dark matter, or modification to the law of gravity at very low accelerations (dark gravity).

Dark matter, unseen matter, would case rotational velocities to be higher than otherwise expected. Dark, or modified gravity, additional gravity beyond Newtonian (or general relativity) would do the same.

Now a team of astronomers (Genzel et al. 2017) have measured the rotation curves of six individual galaxies at moderately high redshifts ranging from about 0.9 to 2.4.

Furthermore, as presented in a companion paper, they have stacked a sample of 97 galaxies with redshifts from 0.6 to 2.6  to derive an average high-redshift rotation curve (P. Lang et al. 2017). While individually they cannot produce sufficiently high quality rotation curves, they are able to produce a mean normalized curve for the sample as a whole with sufficiently good statistics.

In both cases the results show rotation curves that fall off with increasing distance from the galaxy center, and in a manner consistent with little or no dark matter contribution (Keplerian or Newtonian style behavior).

In the paper with rotation curves of 6 galaxies they go on to explain their falling rotation curves as due to “first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius.” 

So in essence they are saying that the central regions of galaxies were relatively more dominated in the past by baryons (ordinary matter), and that since they are measuring Hydrogen alpha emission from gas clouds in this study that they must also take into account the turbulent gas cloud behavior, and this is generally seen to be larger at higher redshifts.

Stacy McGaugh, a Modified Newtonian Dynamics (MOND) proponent, criticizes their work saying that their rotation curves just don’t go far enough out from the galaxy centers to be meaningful. But his criticism of their submission of their first paper to Nature (sometimes considered ‘lightweight’ for astronomy research results) is unfounded since the second paper with the sample of 97 galaxies has been sent to the Astrophysical Journal and is highly detailed in its observational analysis.

The father of MOND, Mordehai Milgrom, takes a more pragmatic view in his commentary. Milgrom calculates that the observed accelerations at the edge of these galaxies are several times higher than the value at which rotation curves should flatten. In addition to this criticism he notes that half of the galaxies have low inclinations, which make the observations less certain, and that the velocity dispersion of gas in galaxies that provides pressure support and allows for lower rotational velocities, is difficult to correct for.

As in MOND, in Erik Verlinde’s emergent gravity there is an extra acceleration (only apparent when the ordinary Newtonian acceleration is very low) of order. This spoofs the behavior of dark matter, but there is no dark matter. The extra ‘dark gravity’ is given by:

g _D = sqrt  {(a_0 \cdot g_B / 6 )}

In this equation a0 = c*H, where H is the Hubble parameter and gB is the usual Newtonian acceleration from the ordinary matter (baryons). Fundamentally, though, Verlinde derives this as the interaction between dark energy, which is an elastic, unequilibrated medium, and baryonic matter.

One could consider that this dark gravity effect might be weaker at high redshifts. One possibility is that density of dark energy evolves with time, although at present no such evolution is observed.

Verlinde assumes a dark energy dominated de Sitter model universe for which the cosmological constant is much larger than the matter contribution and approaches unity, Λ = 1 in units of the critical density. Our universe does not yet fully meet that criteria, but has Λ about 0.68, so it is a reasonable approximation.

At redshifts around z = 1 and 2 this approximation would be much less appropriate. We do not yet have a Verlindean cosmology, so it is not clear how to compute the expected dark gravity in such a case, but it may be less than today, or greater than today. Verlinde’s extra acceleration goes as the square root of the Hubble parameter. That was greater in the past and would imply more dark gravity. But  in reality the effect is due to dark energy, so it may go with the one-fourth power  of an unvarying cosmological constant and not change with time (there is a relationship that goes as H² ∝ Λ in the de Sitter model) or change very slowly.

At very large redshifts matter would completely dominate over the dark energy and the dark gravity effect might be of no consequence, unlike today. As usual we await more observations, both at higher redshifts, and further out from the galaxy centers at moderate redshifts.

References:

R. Genzel et al. 2017, “Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago”, Nature 543, 397–401, http://www.nature.com/nature/journal/v543/n7645/full/nature21685.html

P. Lang et al. 2017, “Falling outer rotation curves of star-forming galaxies at 0.6 < z < 2.6 probed with KMOS^3D and SINS/ZC-SINF” https://arxiv.org/abs/1703.05491

Stacy McGaugh 2017, https://tritonstation.wordpress.com/2017/03/19/declining-rotation-curves-at-high-redshift/

Mordehai Milgrom 2017, “High redshift rotation curves and MOND” https://arxiv.org/abs/1703.06110v2

Erik Verlinde 2016, “Emergent Gravity and the Dark Universe” https;//arXiv.org/abs/1611.02269v1


Primordial Black Holes as Dark Matter?

LIGO Gravitational Wave Detection Postulated to be Due to Primordial Black Holes

Dark matter remains elusive, with overwhelming evidence for its gravitational effects, but no confirmed direct detection of exotic dark matter particles.

Another possibility which is being re-examined as an explanation for dark matter is that of black holes that formed in the very early universe, which in principle could be of very small mass, or quite large mass. And they may have initially formed at smaller masses and then aggregated gravitationally to form larger black holes.

Recently gravitational waves were discovered for the first time, by both of the LIGO instruments, located in Louisiana and in Washington State. The gravitational wave signal (GW150914) indicates that the source was a pair of black holes, of about 29 and 36 solar masses respectively, spiraling together into a single black hole of about 62 solar masses. A full 3 solar masses’ worth of gravitational energy was radiated way in the merger. Breaking news: LIGO has just this month announced gravitational waves from a second black hole binary of 22 solar masses total. One solar mass of energy was radiated away in the merger.

massrangescompactobjects.jpg

Image credit: NASA/JPL, http://www.nasa.gov/jpl/nustar/pia18842

Most of the black holes that we detect (indirectly, from their accretion disks) are stellar-sized in the range of 10 to 100 solar masses and are believed to be the evolutionary endpoints of massive stars. We detect them when they are surrounded by accretion disks of hot luminous matter outside of their event horizons. The other main category of black holes exceeds a million solar masses and can even be more than a billion solar masses, and are known as supermassive black holes.

It is possible that some of the stellar-sized and even elusive intermediate black holes were formed in the Big Bang. Such black holes are referred to as primordial black holes. There are a variety of theoretical formation mechanisms, such as cosmic strings whose loops in all dimensions are contained within the event horizon radius (Schwarzschild radius). In general such primordial black holes (PBHs) would be distributed in a galaxy’s halo, would interact rarely and not have accretion disks and thus would not be detectable due to electromagnetic radiation. That is, they would behave as dark matter.

Dr. Simon Bird and coauthors have recently proposed that the gravitational wave event (GW150914) could be due to two primordial black holes encountering each other in a galactic halo, radiate enough of their kinetic energy away in gravity waves to become bound to each other and inspiral to a single black hole with a final burst of gravitational radiation. The frequency of events is estimated to be of order a few per year per cubic Gigaparsec (a Gigaparsec is 3.26 billion light years), if the dark matter abundance is dominated by PBHs.

While low-mass PBHs have been ruled out for the most part, except of a window around one one-hundred millionth of a solar mass, the authors suggest a window also remains for PBHs in the range from 20 to 100 solar masses.

Dr. A. Kashlinsky has gone further to suggest that the cosmic infrared background (CIB) of unresolved 2 to 5 micron near-infrared sources is due to PBHs. In this case the PBHs would be the dominant dark matter component in galactic halos and would mediate early star and galaxy formation. Furthermore there is an unresolved soft cosmic X-ray background which appears to be correlated with the CIB.

This would be a trifecta, with PBHs explaining much or most of the dark matter, the CIB and the soft-X-Ray CXB! But at this point it’s all rather speculative.

The LIGO instruments are now upgraded to Advanced LIGO and as more gravitational wave events are detected due to black holes, we can gain further insight into this possible explanation for dark matter, in whole or in part. Improved satellite born experiments to further resolve the CIB and CXB will also help to explore this possibility of PBHs as a major component to dark matter.

References:

S. Bird et al. arXiv:1603.00464v2 “Did LIGO detect Dark Matter”

A. Kashlinksy arXiv:1605.04023v1 “LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies”

http://www.space.com/26857-medium-size-black-hole-discovery-m82.html – “It’s Confirmed! Black Holes Do Come in Medium Sizes”

Video (artist’s representation) of inspiral and merger of binary black hole GW151226 (second gravitational wave detection): https://youtu.be/KwbXxzgAObU

NEW BOOK just released:

S. Perrenod, 2016, 72 Beautiful Galaxies (especially designed for iPad, iOS; ages 12 and up)

Andromeda_galaxy_Galex


Most Distant Galaxy Known: over 95% of the way back to the origin

Recently, a team of astronomers from the U.S., U.K. and The Netherlands have confirmed the most distant galaxy known. This galaxy had previously been estimated to have a redshift of z = 8.57, from photometric methods, that is, from the general shape of the spectrum.

EGSY8p7-a

Image: Hubble Space Telescope, NASA/STScI

More accurate redshifts are obtained by measuring particular emission or absorption lines, which have precisely known laboratory (z = 0) wavelengths.

The team measured Lyman alpha line emission, and have determined the redshift to be z = 8.68, in good agreement with the photometric redshift. The Lyman alpha line is a main transition line in neutral hydrogen that occurs at 1216 Angstroms (.1216 microns) in the rest frame. The authors observed the line in the infrared and centered at 11,776 Angstroms (1.1776 microns) on 2 separate observing nights, detecting the Lyman alpha line each night. The redshift is given by 1 + z = 11,776/1216 = 9.68, thus z for this galaxy is 8.68.

The galaxy image is thought to be somewhat magnified by intervening dark matter gravitational lensing, but less than a factor of 2, and perhaps only around 20%.

The significance here is in the detection of Lyman alpha at such a high redshift, corresponding to a time when the universe was only 600 million years old, less than 5% of its current age. Not only does this result determine the age of this earliest known galaxy, but it also provides insight into the nature of the intergalactic medium.

The cosmic microwave background radiation is the most distant source we can see. It comes from all directions, filling the universe and reflects a time when the universe was only 380,000 years old and transitioned from ionized plasma to neutral hydrogen and helium.

Later on in the universe’s evolution, as the first galaxies and stars form, hot blue stars produce ionizing ultraviolet radiation, and the neutral gas is reionized – electrons are stripped from their atoms. This process has generally thought to have completed by redshift ~ 6, at a time when the universe was around 1 billion years old.

Lyman alpha emission is not expected in a region which is still neutral, that has not yet undergone the reionization process. So the implication here is that the surrounding intergalactic medium in the neighborhood of EGSY8p7 has already been reionized at a significantly higher redshift.

The universe does not become reionized in a uniform way, rather the process would be expected to happen in “bubbles” or regions surrounding energetic galaxies with hot blue stellar populations. Eventually all the ionized regions overlap and the intergalactic medium becomes fully ionized.

This detection helps astronomers to better understand how reionization occurred.

The team’s paper is submitted to the Astrophysical Journal Letters and can be found here:

http://arxiv.org/pdf/1507.02679v2.pdf