Category Archives: Big Bang & Inflation

Black Holes* as a possible source of Universal Dark Energy

Previously I have written about the possibility of primordial black holes as the explanation for dark matter, and on the observational constraints around such a possibility. 

But maybe it is dark energy, not dark matter, that black holes explain. More precisely,  it would be dark energy stars (or gravatars, or GEODEs) that are observationally similar to black holes.

Dark energy

Dark energy is named thusly because it has negative pressure. There is something known as an equation of state that relates pressure to energy density. For normal matter, or for dark matter, the coefficient of the relationship, w, is zero or slightly positive, and for radiation it is 1/3.

If it is non-zero and positive then the fluid component loses energy as the universe expands, and for radiation, this means there is a cosmological redshift. The redshift is in proportion to the universe’s linear scale factor, which can be written as the inverse of the cosmological redshift plus one, by normalizing it to the present-day scale. The cosmological redshift is a measure of the epoch as well, currently z = 0, and the higher the redshift the farther we look back into the past, into the earlier years of the universe. Light emitted at frequency ν is shifted to lower frequency (longer wavelength) ν’ = ν / (1 + z).

Since 1998, we have known that we live in a universe dominated by dark energy (and its associated dark pressure, or negative pressure). The associated dark pressure outweighs dark energy by a factor of 3 because it appears 3 times, once for each spatial component in Einstein’s stress-energy tensor equations of general relativity.

Thus dark energy contributes a negative gravity, or expansion acceleration, and we observe that our universe has been accelerating in its expansion for the past 4 or 5 billion years, since dark energy now provides over 2/3 of the universal energy balance. Dark matter and ordinary matter together amount to just less than 1/3 of the average rest-mass energy density.

If w is less than -1/3 for some pervasive cosmological component, then you have dark energy behavior for that component, and in our universe today over the past several billion years, measurements show w = -1 or very close to it. This is the cosmological constant case where dark energy’s negative pressure has the same magnitude but the opposite sign of the positive dark energy density. More precisely, the dark pressure is the negative of the energy density times the speed of light squared.

Non-singular black holes

There has been consideration for decades of other types of black holes that would not have a singularity at the center. In standard solutions of general relativity black holes have a central singular point or flat zone, depending on whether their angular momentum is zero or positive.

For example a collapsing neutron star overwhelms all pressure support from neutron degeneracy pressure once its mass exceeds the TOV limit at about 2.7 solar masses (depending on angular momentum), and forms a black hole that is often presumed to collapse to a singularity.

But when considering quantum gravity, and quantum physics generally, then there should be some very exotic behavior at the center, we just don’t know what. Vacuum energy is one possibility.

For decades various proposals have been made for alternatives to a singularity, but the problem has been observationally intractable. A Soviet cosmologist Gliner, who was born just 100 years ago in Kyiv, and who only passed away in 2021, proposed the basis for dark energy stars and a dark energy driven cosmology framework in 1965 (in English translation, 1966).

E. Gliner, early 1970s in St. Petersburg, courtesy Gliner family

He defended his Ph.D. thesis in general relativity including dark energy as a component of the stress-energy tensor in 1972. Gliner emigrated to the US in 1980.

The essential idea is that the equation of state for compressed matter changes to that of a material (or “stuff”) with a fully negative pressure, w = -1 and thus that black hole collapse would naturally result in dark energy cores, creating dark energy stars or gravatars rather than traditional black holes. The cores could be surrounded with an intermediate transition zone and a skin or shell of normal matter (Beltracchi and Gondolo 2019). The dark energy cores would have negative pressure.

Standard black hole solution is incomplete

Normally black hole physics is attacked with Kerr (non-zero angular momentum) or Schwarzschild (zero angular momentum) solutions. But these are incomplete, in that they assume empty surroundings. There is no matching of the solution to the overall background which is a cosmological solution. The universe tracks an isotropic and homogeneous (on the largest scales) Lambda-cold dark matter (ΛCDM) solution of the equations of general relativity. Since dark energy now dominates, it is approaching a de Sitter exponential runaway, whereas traditional black hole solutions with singularities are quite the opposite, known as anti-de Sitter.

We have no general solution for black hole equations including the backdrop of an expanding universe. The local Kerr solution for rotating black holes that is widely used ignores the far field. Really one should match the two solution regimes, but there has been no analytical solution that does that; black hole computations are very difficult in general, even ignoring the far field.

In 2019, Croker and Weiner of the University of Hawaii found a way to match a model of dark energy cores to the standard ΛCDM cosmology, and demonstrate that for w = -1 that dark energy stars (black holes with dark energy cores) would have masses that grow in proportion to the cube of the universe’s linear scale factora, starting immediately from their initial formation at high redshifts. In effect they are forced to grow their masses and expand (with their radius proportional to mass as for a black hole) by all of the other dark energy stars in the universe acting in a collective fashion. They call this effect, cosmological coupling of the dark energy star gravity to the long-range and long-term cosmological gravitational field.

This can be considered a blueshift for mass, as distinguished from the energy or frequency redshift we see with radiation in the cosmos.

Their approach potentially addresses several problems: (1) an excess of larger galaxies and their supermassive black holes seen very early on in the recent James Webb Space Telescope data, (2) more intermediate mass black holes than expected, as confirmed from gravitational wave observations of black hole mergers, (see Coker, Zevin et al. 2021 for a possible explanation via cosmological coupling), and (3) possibly a natural explanation for all or a substantial portion of the dark energy in the universe, which has been assumed to be highly diffuse rather than composed primarily of a very large number of point sources.

Inside dark energy stars, the dark energy density would be many, many orders of magnitude higher than it is in the universe at large. But as we will see below, it might be enough to explain all of the dark energy budget of the ΛCDM cosmology.

M87* supermassive black hole (or dark energy star) imaged in polarized radio waves by the Event Horizon Telescope collaboration; signals are combined from a global collection of radio telescopes via aperture synthesis techniques. European Southern Observatory, licensed under a Creative Commons Attribution 4.0 International License

A revolutionary proposal

Here’s where it gets weird. A number of researchers have investigated the coupling of a black hole’s interior to an external expanding universe. In this case there is no singularity but instead a vacuum energy solution interior to the (growing) compact stellar remnant.

And one of the most favored possibilities is that the coupling causes the mass for all black holes to grow in proportion to the universe’s characteristic linear size a cubed, just as if it were a cosmological constant form of dark energy. This type of “stuff” retains equal energy density throughout all of space even as the space expands, as a result of its negative pressure with equation of state parameter w = -1.

Just this February a very interesting pair of papers has been published in The Astrophysical Journal (the most prestigious American journal for such work) by a team of astronomers from 9 countries (US, UK, Canada, Japan, Netherlands, Germany, Denmark, Portugal, and Cyprus), led by the University of Hawaii team mentioned above.

They have used observations of a large number of supermassive black holes and their companion galaxies out to redshift 2.5 (when the universe was less than 3 billion years of age) to argue that there is observable cosmologicalcouplingbetween the cosmological gravitational field at large and the SMBH masses, where they suppose those masses are dominated by dark energy cores.

Figure 1 from Farrah, Croker, et al. shows their measured cosmological coupling parameter k based on 3 catalogs (5 samples using different emission lines) of supermassive black holes contained in elliptical galaxies at high redshifts, 0.7 < z < 2.5. If k =3, that corresponds to the cosmological constant case with equation of state parameter w = -1.

Their argument is that the black hole* (or *dark energy star) masses have grown much faster than could be explained by the usual mechanism of accretion of nearby matter and mergers.

In Figure 1 from their second paper of the pair (Farrah, Croker, et al. 2023), they present their measurements of the strength of cosmological coupling for five different galaxy surveys (three sets of galaxies but two sets were surveyed at two frequencies each). They observed strong increases in the measured SMBH masses from redshifts close to z =1 and extending above z = 2. They derive a coupling strength parameter k that measures the power law index of how fast the black hole masses grow with redshift. 

Their reformulation of the black hole model to include the far field yields cosmological coupling of the dark energy cores. The mass of the dark energy core, coupled to the overall cosmological solution, results in a mass increase M ~ a^k , a power law of index k, depending on the equation of state for the dark energy. Here a is the cosmological linear scale factor of the universal expansion and is also equal to 1/(1+z) where z is the redshift at which a galaxy and its SMBH are observed. (The scale factor a is normalized to 1 presently, such that z = 0 now and is positive in the past).

And they are claiming that their sample of several hundred galaxies and supermassive black holes indicates k = 3, on average, more or less. So between z = 1 and z = 0, over the past 8 billion years, they interpret their observations as an 8-fold growth in black hole masses. And they say this is consistent with M growing by a^3 as the universe’s linear scale has doubled (a was 1/2 at z = 1). This implies they are measuring a different class of black holes than we normally think of, those don’t increase in mass other than by accretion and mergers. Normal black holes would yield k > 0 but not by much, based on expected accretion and mergers. The k = 0 case they state is excluded by their observations with over 99.9% confidence.

The set of upper graphs in Figure 1 is for the various surveys, and the large lower graph combines all of the surveys as a single data set. They find a near-Gaussian distribution, and k is centered near 3, with an uncertainty close to 1. There is a 2/3 chance that the value lies between 2.33 and 3.85, based on their total sample of over 400 active galaxy nuclei.

And they also suggest this effect would be for all dark energy dominated “black holes”, including stellar class and intermediate BHs, not just SMBHs. So they claim fast evolution in all dark energy star masses, in proportion to the volume growth of the expanding universe, and consistent with dark energy cores having an equation of state just like the observed cosmological constant.

Now it gets really interesting.

We already know that the dark energy density of the universe, unlike the ever-thinning mater and radiation density, is more or less constant in absolute terms. That is the cosmological constant, due to vacuumenergy, interpretation of dark energy for which the pressure is negative and causes acceleration of the universe’s expansion. Each additional volume of the growth has its own associated vacuum energy (around 4 proton masses’ worth of rest energy per cubic meter). This is the universe’s biggest free lunch since its original creation.

The authors focus on dark energy starts created during the earliest bursts of star formation. These are the so-called Pop III stars, never observed because all or mostly all have reached end of life long ago. When galaxy and star formation starts as early as about 200 million years after the Big Bang, there is only hydrogen and helium for atomic matter. Heavier elements must be made in those first Pop III stars. As a result of their composition, the first stars with zero ‘metallacity’ have higher stellar masses; high mass stars are the ones that evolve most rapidly and they quickly end up as white dwarfs, or more to the point here, black holes or neutron stars in supernovae events. Or, they end their lives as dark energy stars.

The number of these compact post supernova remnant stars will decrease in density in inverse proportion to the increasing volume of the expanding universe. But the masses of all those that are dark energy stars would increase as the cube of the scale factor, in proportion to the increasing volume.

And the net effect would be just right to create a cosmological constant form of dark energy as the total contribution of billions upon billions of dark energy stars. And dark energy would be growing as a background field from very early on. Regular matter and dark matter thin out with time, but this cohort would have roughly constant energy density once most of the first early rounds of star formation completed, perhaps by redshift z = 8, well within the first billion years. Consequently, dark energy cores, collectively, would dominate the universe within the last 4 or 5 billion years or so, as the ordinary and dark matter density fell off. And now its dominance keeps growing with time.

But is there enough dark energy in cores?

But is it enough? How much dark energy is captured in these dark energy stars, and can it explain the dominant 69% of the universe’s energy balance that is inferred from observations of distant supernovae, and from other methods?

The dark energy cores are presumably formed from the infall and extreme compression of ordinary matter, from baryons captured into the progenitors of these black hole like stars and being compressed to such a high degree that they are converted into a rather uniform dark energy fluid. And that dark energy fluid has the unusual property of negative pressure that prevents further compression to a singularity.

It is possible they could consume some dark matter, but ordinary matter clumps much more easily since it can radiate away energy via radiation, which dark matter does not do. Any dark matter consumption would only build their case here, but we know the overall dark matter ratio of 5:1 versus ordinary matter has not changed much since the cosmic microwave background emission after the first 380,000 years. 

We know from cosmic microwave background measurements and other observations, that the ordinary matter or baryon budget of the universe is just about 4.9%, we’ll call it 5% in round numbers. The rest is 69% dark energy, and 26% dark matter.

So the question is, how much of the 5% must be locked up in dark energy stars to explain the 69% dark energy dominance that we currently see?

Remember that with dark energy stars the mass grows as the volume of the universe grows, that is in proportion to (1 + z)3. Now dark energy stars will be formed at different cosmological redshifts, but let’s just ask what fraction of baryons would we need to convert, assuming all are formed at the same epoch. This will give us a rough feel for the range of when and of how much.

Table 1 looks at some possibilities. It asks what fraction of baryons need to collapse into dark energy cores, and we see that the range is from only about 0.2% to 1% of baryons are required. Those baryons are just 5% of the mass-energy of the universe, and only 1% or less of those are needed, because the mass expansion factors range from about 1000 to about 10,000 — 3 to 4 orders of magnitude, depending on when the dark energy stars form.

Table 1. The first column has the redshift (epoch) of dark energy star formation. In actuality it will happen over a broad range of redshifts, but the earliest stars and galaxies seem to have formed from around 200 to 500 million years after the Big Bang started. The second column has the mass expansion factor (1+z)3; the DE star’s gravitational mass grows by that factor from the formation z until now. The third column is the age of the universe at DE star formation. The fourth column tells us what fraction of all baryons need to be incorporated into dark energy cores in those stars (they could be somewhat more massive than that). The fifth column is the lower bound on their current mass if they never experience a merger or accretion of other matter. All in all it looks as if less than 1% of baryons convert to dark energy cores.

The fifth column shows the current mass of a minimal 3 solar mass dark energy star at present, noting that 3 solar masses is the lightest known black hole. There may be lighter dark energy stars, but not very much lighter than that, perhaps a little less than 2 solar masses. And the number density should be highest at the low end according to everything we know about star formation.

Now to some degree these are underestimates for the final mass, as shown in the fifth column, since there will be mergers and accretion of other matter into these stars, and of the two effects, the mergers are more important, but they support the general argument. If a dark energy star merges with a neutron star, or other type of black hole, the dark energy core gains in relative terms. So all of this is a plausibility argument that says if the formation is of dark energy stars of a few solar masses in the epoch from 200 to 500 million years after the Big Bang, that less than 1% of all baryons are needed. And it says that the final masses are well into the intermediate range of thousands or tens of thousands of solar masses, and yet they can hide out in galaxies or between galaxies with hundreds of billions of solar masses, only contributing a few percent to the total mass. 

Dark energy star cosmology 

Dark energy star cosmology needs to agree with the known set of cosmological observations. It has to provide all or a significant fraction of the total dark energy budget in order to be useful. It appears from simple arguments that it can meet the budget by conversion of a small percentage of the baryons in the universe to dark energy stars.

It should exhibit an equation of state w = -1 or nearly so, and it appears to do that. It should not contribute too much mass to upset our galaxy mass estimates. It does that and it does not appear to explain dark matter in any direct way.

Dark energy stars collectively could potentially fill that role. In the model described above it is their collective effects that are being modeled as a dark energy background field that in turn drives dark energy star cores to higher masses over time. Dark energy (as a global field) feeds on itself (the dark energy cores)!

There are some differences with the normal ΛCDM cosmology assumption of a highly uniform dark energy background, not one composed of a very large number of point sources. In particular the ΛCDM cosmology has the dark energy background there from the very beginning, but it is not significant until,the universe has expanded sufficiently.

With the dark energy star case it has to be built up, one dark energy core at a time. So the dark energy effects do not begin until redshifts less than say z = 20 to 30 and most of it may be built up by z = 8 to 10, within the first billion years.

In the dark energy star case we will have accretion of nearby matter including stars, and mergers with neutron stars, other dark energy stars, and other black hole types.

A merger with a neutron star or non dark energy star only increases the mass in dark energy cores; it is positive evolution in the aggregate dark energy core component. A merger of two dark energy stars will lose some of the collective mass in conversion to gravitational radiation, and is a negative contribution toward the overall dark energy budget.

One way to distinguish between the two cosmological models is to push our measurement of the strength of dark energy as far back as we can and look for variations. Another is to identify as many individual intermediate scale black holes / dark energy stars as we can from gravitational wave surveys and from detailed studies of globular clusters and dwarf galaxies.

What about dark matter?

Dark matter’s ratio to ordinary matter at the time of the cosmic microwave background emission is measured to be 5:1 and currently in galaxies and their rotation curves and in clusters of galaxies in their intracluster medium it is also seen to be around 5:1 on average. Since the dark energy cores in the Croker et al. proposal are created hundreds of millions of years after the cosmic microwave background era, then these dark energy stars can not be a major contribution to dark matter per se.

The pair of papers just published by the team doesn’t really discuss dark matter implications. But a previous paper by Croker, Runburg and Farrah (2020) explored the interaction between the dark energy bulk behavior of the global population of dark energy stars with cold dark matter and found little or no affect.

Their process converts a rather small percentage of baryons (or even some dark matter particles) into dark energy and its negative pressure. Such material couples differently to the gravitational field than dark matter, which like ordinary matter is approximately dust-like with an equation of state parameter w = 0.

In the 2020 paper they find that GEODEs or dark energy stars can be spread out even more than dark matter that dominates galaxy halos, or the intracluster medium in rich clusters of galaxies.

Prizes ahead?

This concept of cosmological coupling is one of the most interesting areas of observational and theoretical cosmology in this century. If this work by Croker and collaborators is confirmed the team will be winning prizes in astrophysics and cosmology, since it could be a real breakthrough in both our understanding of the nature of dark energy and our understanding of black hole physics.

In any case, Dark Energy Star already has its own song. 

Glossary

Black Hole: A dense collection of matter that collapses inside a small radius, and in theory, to a singularity, and which has sufficiently strong gravity that nothing, not even light, is able to escape. Black holes are characterized by three numbers: mass, angular momentum, and charge.

Cosmological constant: Einstein added this term, Λ, on the left hand side of the equations of general relativity, in a search for a static universe solution. It corresponds to an equation of state parameter w = -1. If the term is moved to the right hand side it becomes a dark energy source term in the stress-energy tensor.

Cosmological coupling: The coupling of local properties to the overall cosmological model. For example, photons redshift to lower energies with the expansion of the universe. It is argued that dark energy stellar cores would collectively couple to the overall Friedmann cosmology that matches the bulk parameters of the universe. In this case it would be a ‘blueshift’ style increase in mass in proportion to the growing volume of the universe, or perhaps more slowly.

Dark Energy: Usually attributed to energy of the vacuum, dark energy has a negative pressure in proportion to its energy density. It was confirmed by Nobel prize winning teams that dark energy is the dominant component of the universe’s mass-energy balance, some 69% of the critical value, and is driving an accelerated expansion with an equation of state w = -1 to within small errors.

Dark Energy Star: A highly compact object that should look like a black hole externally but has no singularity at its core. Instead it has a core of dark energy. If one integrates over all dark energy stars, it may add up to a portion or all of the universe’s dark energy budget. It should have a crust of ‘normal’ matter with anisotropic stress at the boundary with the core, or an intermediate transition zone with varying equation of state between the crust and the core.

Dark Matter: An unknown substance thought to reside in galactic halos, with 5 times as much matter density on average as ordinary matter. Dark matter does not interact electromagnetically and is typically considered to be particulate in nature, although primordial mini black holes have been suggested as one possible explanation.

Equation of state: The relationship between pressure and energy density, P = w * ρ * c^2 where P is pressure and can be negative, and ρ the energy density is positive. If w < -1/3 there is dark pressure, if w = -1 it is the simplest cosmological constant form. Dark matter or a collection of stars or galaxies can be modeled as w ~ 0.

GEODEs: GEneric Objects of Dark Energy, dark energy stars. Formation is thought to occur from Pop III stars, the first stellar generation, at epochs 30 > z > 8.

Gravastar: A stellar model that has a dark energy core and a very thin outer shell. With normal matter added there is anisotropic stress at the boundary to maintain pressure continuity from the core to the shell.

Non-singular black holes: A black hole like object with no singularity.

Primordial black holes: Black holes that may have formed in the very early universe, within the first second. Primordial dark energy stars in large numbers would be problematic, because they would grow in mass by (1 + z)^3 where z >> 1000. 

Vacuum energy: The irreducible energy of the vacuum state. The vacuum state is not empty, it is pervaded by fields and virtual particles that pop in and out of existence on very short time scales.

References

https://scitechdaily.com/cosmological-coupling-new-evidence-points-to-black-holes-as-source-of-dark-energy/ – Popular article about the research from University of Hawaii lead authors and collaborators 

https://www.phys.hawaii.edu/~kcroker/ – Kevin Croker’s web site at University of Hawaii

Beltracchi, P. and Gondolo, P. 2019, https://arxiv.org/abs/1810.12400 “Formation of Dark Energy Stars”

Croker, K.S. and Weiner J.L. 2019, https://dor.org/10.3847/1538-4357/ab32da “Implications of Symmetry and Pressure in Friedmann Cosmology. I. Formalism”

Croker, K.S., Nishimura, K.A., and Farrah D., 2020 https://arxiv.org/pdf/1904.03781.pdf, “Implications of Symmetry and Pressure in Friedmann Cosmology. II. Stellar Remnant Black Hole Mass Function”

Croker, K.S., Runburg, J., and Farrah D., 2020 https://doi.org/10.3847/1538-4357/abad2f “Implications of Symmetry and Pressure in Friedmann Cosmology. III. Point Sources of Dark Energy that tend toward Uniformity”

Croker, K.S., Zevin, M.J., Farrah, D., Nishimura, K.A., and Tarle, G. 2021, “Cosmologically coupled compact objects: a single parameter model for LIGO-Virgo mass and redshift distributions” https://arxiv.org/pdf/2109.08146.pdf

Farrah, D., Croker, K.S. et al. 2023 February, https://iopscience.iop.org/article/10.3847/2041-8213/acb704/pdfObservational Evidence for Cosmological Coupling of Black Holes and its Implications for an Astrophysical Source of Dark Energy” (appeared in Ap.J. Letters 20 February, 2023)

Farrah, D., Petty S., Croker K.S. et al. 2023 February, https://doi.org/10.3847/1538-4357/acac2e “A Preferential Growth Channel for Supermassive Black Holes in Elliptical Galaxies at z <~ 2”

Ghezzi, C.R. 2011, https://arxiv.org/pdf/0908.0779.pdf “Anisotropic dark energy stars”

Gliner, E.B. 1965, Algebraic Properties of the Energy-momentum Tensor and Vacuum-like States of Matter. ZhTF 49, 542–548. English transl.: Sov. Phys. JETP 1966, 22, 378.

Harikane, Y., Ouchi, M., et al. arXiv:2208.01612v3, “A Comprehensive Study on Galaxies at z ~ 9 – 16 Found in the Early JWST Data: UV Luminosity Functions and Cosmic Star-Formation History at the Pre-Reionization Epoch”

Perrenod, S.C. 2017, “Dark Energy and the Cosmological Constant” https://darkmatterdarkenergy.com/2017/07/13/dark-energy-and-the-comological-constant/ 

Whalen, D.J., Even, W. et al.2013, doi:10.1088/004-637X/778/1/17, “Supermassive Population III Supernovae and the Birth of the first Quasars”

Yakovlev, D. and Kaminker, A. 2023, https://arxiv.org/pdf/2301.13150.pdf “Nearly Forgotten Cosmological Concept of E.B. Gliner”

Advertisement

Hexaquark Dark Matter: Bosons, but not WIMPy at all

Dibaryons

Imagine you smash a proton and neutron together. What do you get? Typically you get a deuteron which is the nucleus of deuterium, heavy hydrogen. Deuterium has one electron in its neutral atomic state. And it has two baryons, the proton and neutron, so it is known as a dibaryon.

Now as you have heard, protons and neutrons are really quark triplets, held together by gluons in bound configurations. A proton has two up quarks (electric charge +2/3) and a down quark (charge -1/3) for a net charge of +1 and a neutron has two down quarks and an up quark for a net charge of 0.

These are the two lightest quarks and protons and neutrons are by far the dominant components in the ordinary matter in the universe, mostly as hydrogen and helium.

Quarks, protons, and neutrons are all fermions, particles with half-integer spins (1/2, 3/2, -1/2, etc.).

The other main class of particles is called bosons, and that class includes photons, gluons, the W and Z of the weak interaction, and the never directly observed graviton. They all have integer spins (typically 1, but 0 for the Higgs boson, and 2 for the graviton).

752px-Standard_Model_of_Elementary_Particles.svg

Figure 1: The Standard Model major particles: quarks (purple), leptons (green), force carrier bosons (orange), Higgs boson (yellow) with mass, charge, spin indicated.

Six quarks in a Bag

Suppose you collided a proton and neutron together, each with three quarks, and you ended up with a single six quark particle that was stable. It would be a more exotic type of dibaryon. It would have three up quarks, three down quarks, and it would not be a fermion. It would be a boson, with integer spin, spin 0 or 1, in this case. It would be six quarks in a bag, a bound state held together by gluons.

sixquarksinabag

Figure 2. Six quarks in a bag, a hexaquark

Hexaquark2380

Figure 3. The d* resonance at 2.38 GeV, observed at the Cooler Synchrotron in Julich, Germany

Such a particle has been discovered in the past decade, and is named the d* hexaquark. It is seen as the resonance in Figure 3 above, found in proton-neutron collisions, and has a mass of 2.38 GeV (for reference the proton mass is 0.935 GeV and the neutron mass is 0.938 GeV). It decays to a deuteron and two pions, either neutral as shown in the figure, or charged pions.

It is also possible to produce a d* by irradiating a deuteron with a gamma ray.

The d* was already predicted by the famed mathematician and physicist Freeman Dyson in 1964, working with his collaborator Xuong. Their mass estimate was quite close at 2.35 GeV, using a simple quark model.

Dyson just passed away recently; you may have heard of his Dyson sphere concept. The idea is that an advanced civilization would build a sphere of solid material surrounding its star in order to hold an extremely large population and absorb virtually all of the star’s energy. Larry Niven modified this to a ring in his 1970 sci-fi novel Ringworld.

Hexaquark dark matter

Azizi, Ageav, and Sundu have recently suggested a hexaquark of the form uuddss, that is, two up, two down, and two strange quarks. Their mass estimate is around 1.2 GeV, half that of the d* composed of only up and down quarks. It is expected to be stable with long lifetime.

And also recently, Bashkanov and Watts at the University of York have made a nice proposal that d* could be the dark matter particle. The d* particle is itself unstable, but they propose that stable condensates with many d* particles could form. Their paper,  “A New Possibility for Light-Quark Dark Matter” is here:

https://iopscience.iop.org/article/10.1088/1361-6471/ab67e8/pdf

The d* has one great advantage over the other proposed particles, it has actually been discovered! The d* has a good sized mass for a dark matter candidate, at about 2.5 times the mass of the proton.

The authors find that the d* could form lengthy chains or spherical condensates with thousands to millions of d* particles. Unlike individual d* particles, the condensates could be stable ‘super atoms’ lasting for billions of years.

However to make this work the binding energy would have to exceed the difference between the 2.38 GeV d* mass and the deuteron mass of 2.014mGeV, thus would have to be greater than about 0.4 GeV.

The d* would be produced thermally when the universe was at temperatures in the range from 1 to 3 trillion Kelvins. The condensates would need to form quickly before individual d* particles of short lifetimes decayed away.

The favored candidates for dark matter have been WIMPs, supersymmetric particles. But no supersymmetric particle has ever been detected at the Large Hadron Collider or elsewhere, which is incredibly disappointing for many particle physicists. The other main candidates have been the axion and sterile neutrino, both quite low in mass. These have never been directly detected either; they remain hypothetical.

The d* particle is a boson, and the authors’ theoretical approach is that in the early universe as it cooled, both baryons and dibaryonic matter froze out. The baryons ended up, after the cosmic nucleosynthesis phase as protons, deuterium dibaryons, and helium nuclei (alpha particles, that are composed essentially of two deuterons), the main constituents of ordinary matter.

What would happen to d* under the early conditions of the Big Bang? Bosons like to clump together, into something called Bose-Einstein condensates. Yes, that Einstein. And that Boson. Bose-Einstein statistics were developed in the 1920s and govern the statistics of bosons (integer spin particles), and differ from that of fermions.

To confirm this model would require astronomical observations or cosmic ray observations. Decays of d* particles could result in gamma ray production with energies up to 0.5 GeV. Their decay products might also be seen as upward moving cosmic rays, in Earth-bound cosmic ray experiments. These would be seen coming up through the Earth, unlike normal cosmic rays that cannot penetrate so much ordinary matter, and the decay events would result in gamma rays, nucleons and deuterons, as well as pions as the decay products.

 

Additional reference: http://www.sci-news.com/physics/dark-matter-particle-d-star-hexaquark-08188.html


Dark Gravity: Is Gravity Thermodynamic?

This is the first in a series of articles on ‘dark gravity’ that look at emergent gravity and modifications to general relativity. In my book Dark Matter, Dark Energy, Dark Gravity I explained that I had picked Dark Gravity to be part of the title because of the serious limitations in our understanding of gravity. It is not like the other 3 forces; we have no well accepted quantum description of gravity. And it is some 33 orders of magnitude weaker than those other forces.
I noted that:

The big question here is ~ why is gravity so relatively weak, as compared to the other 3 forces of nature? These 3 forces are the electromagnetic force, the strong nuclear force, and the weak nuclear force. Gravity is different ~ it has a dark or hidden side. It may very well operate in extra dimensions… http://amzn.to/2gKwErb

My major regret with the book is that I was not aware of, and did not include a summary of, Erik Verlinde’s work on emergent gravity. In emergent gravity, gravity is not one of the fundamental forces at all.

Erik Verlinde is a leading string theorist in the Netherlands who in 2009 proposed that gravity is an emergent phenomenon, resulting from the thermodynamic entropy of the microstates of quantum fields.

 In 2009, Verlinde showed that the laws of gravity may be derived by assuming a form of the holographic principle and the laws of thermodynamics. This may imply that gravity is not a true fundamental force of nature (like e.g. electromagnetism), but instead is a consequence of the universe striving to maximize entropy. – Wikipedia article “Erik Verlinde”

This year, Verlinde extended this work from an unrealistic anti-de Sitter model of the universe to a more realistic de Sitter model. Our runaway universe is approaching a dark energy dominated deSitter solution.

He proposes that general relativity is modified at large scales in a way that mimics the phenomena that have generally been attributed to dark matter. This is in line with MOND, or Modified Newtonian Dynamics. MOND is a long standing proposal from Mordehai Milgrom, who argues that there is no dark matter, rather that gravity is stronger at large distances than predicted by general relativity and Newton’s laws.

In a recent article on cosmology and the nature of gravity Dr.Thanu Padmanabhan lays out 6 issues with the canonical Lambda-CDM cosmology based on general relativity and a homogeneous, isotropic, expanding universe. Observations are highly supportive of such a canonical model, with a very early inflation phase and with 1/3 of the mass-energy content in dark energy and 2/3 in matter, mostly dark matter.

And yet,

1. The equation of state (pressure vs. density) of the early universe is indeterminate in principle, as well as in practice.

2. The history of the universe can be modeled based on just 3 energy density parameters: i) density during inflation, ii) density at radiation – matter equilibrium, and iii) dark energy density at late epochs. Both the first and last are dark energy driven inflationary de Sitter solutions, apparently unconnected, and one very rapid, and one very long lived. (No mention of dark matter density here).

3. One can construct a formula for the information content at the cosmic horizon from these 3 densities, and the value works out to be 4π to high accuracy.

4. There is an absolute reference frame, for which the cosmic microwave background is isotropic. There is an absolute reference scale for time, given by the temperature of the cosmic microwave background.

5. There is an arrow of time, indicated by the expansion of the universe and by the cooling of the cosmic microwave background.

6. The universe has, rather uniquely for physical systems, made a transition from quantum behavior to classical behavior.

“The evolution of spacetime itself can be described in a purely thermodynamic language in terms of suitably defined degrees of freedom in the bulk and boundary of a 3-volume.”

Now in fluid mechanics one observes:

“First, if we probe the fluid at scales comparable to the mean free path, you need to take into account the discreteness of molecules etc., and the fluid description breaks down. Second, a fluid simply might not have reached local thermodynamic equilibrium at the scales (which can be large compared to the mean free path) we are interested in.”

Now it is well known that general relativity as a classical theory must break down at very small scales (very high energies). But also with such a thermodynamic view of spacetime and gravity, one must consider the possibility that the universe has not reached a statistical equilibrium at the largest scales.

One could have reached equilibrium at macroscopic scales much less than the Hubble distance scale c/H (14 billion light-years, H is the Hubble parameter) but not yet reached it at the Hubble scale. In such a case the standard equations of gravity (general relativity) would apply only for the equilibrium region and for accelerations greater than the characteristic Hubble acceleration scale of  c \cdot H (2 centimeters per second / year).

This lack of statistical equilibrium implies the universe could behave similarly to non-equilibrium thermodynamics behavior observed in the laboratory.

The information content of the expanding universe reflects that of the quantum state before inflation, and this result is 4π in natural units by information theoretic arguments similar to those used to derive the entropy of a black hole.

The black hole entropy is  S = A / (4 \cdot Lp^2) where A is the area of the black hole using the Schwarzschild radius formula and Lp is the Planck length, G \hbar / c^3 , where G is the gravitational constant, \hbar  is Planck’s constant.

This beautiful Bekenstein-Hawking entropy formula connects thermodynamics, the quantum world  and gravity.

This same value of the universe’s entropy can also be used to determine the number of e-foldings during inflation to be 6 π² or 59, consistent with the minimum value to enforce a sufficiently homogeneous universe at the epoch of the cosmic microwave background.

If inflation occurs at a reasonable ~ 10^{15}  GeV, one can derive the observed value of the cosmological constant (dark energy) from the information content value as well, argues Dr. Padmanhaban.

This provides a connection between the two dark energy driven de Sitter phases, inflation and the present day runaway universe.

The table below summarizes the 4 major phases of the universe’s history, including the matter dominated phase, which may or may not have included dark matter. Erik Verlinde in his new work, and Milgrom for over 3 decades, question the need for dark matter.

Epoch  /  Dominated  /   Ends at  /   a-t scaling  /   Size at end

Inflation /  Inflaton (dark energy) / 10^{-32} seconds / e^{Ht} (de Sitter) / 10 cm

Radiation / Radiation / 40,000 years / \sqrt t /  10 million light-years

Matter / Matter (baryons) Dark matter? /  9 billion light-years / t^{2/3} /  > 100 billion light-years

Runaway /  Dark energy (Cosmological constant) /  “Infinity” /  e^{Ht} (de Sitter) / “Infinite”

In the next article I will review the status of MOND – Modified Newtonian Dynamics, from the phenomenology and observational evidence.

References

E. Verlinde. “On the Origin of Gravity and the Laws of Newton”. JHEP. 2011 (04): 29 http://arXiv.org/abs/1001.0785

T. Padmanabhan, 2016. “Do We Really Understand the Cosmos?” http://arxiv.org/abs/1611.03505v1

S. Perrenod, 2011. https://darkmatterdarkenergy.com/2011/07/04/dark-energy-drives-a-runaway-universe/

S. Perrenod, 2011. Dark Matter, Dark Energy, Dark Gravity 2011  http://amzn.to/2gKwErb

S. Carroll and G. Remmen, 2016, http://www.preposterousuniverse.com/blog/2016/02/08/guest-post-grant-remmen-on-entropic-gravity/


WIMPs or MACHOs or Primordial Black Holes

A decade or more ago, the debate about dark matter was, is it due to WIMPs (weakly interacting massive particles) or MACHOs (massive compact halo objects)? WIMPs would be new exotic particles, while MACHOs are objects formed from ordinary matter but very hard to detect due to their limited electromagnetic radiation emission.

Arnold_Schwarzenegger_2003

Schwarzenegger (MACHO), not Schwarzschild (Black Holes)

Image credit: Georges Biard, CC BY-SA 3.0

Candidates in the MACHO category such as white dwarf or brown dwarf stars have been ruled out by observational constraints. Black holes formed in the very early universe, dubbed primordial black holes, were thought by many to have been ruled out as well, at least across many mass ranges, such as between the mass of the Moon and the mass of the Sun.

The focus during recent years, and most of the experimental searches, has shifted to WIMPs or other exotic particles (axions or sterile neutrinos primarily). But the WIMPs, which were motivated by supersymmetric extensions to the Standard Model of particle physics, have remained elusive. Most experiments have only placed stricter and stricter limits on their possible abundance and interaction cross-sections. The Large Hadron Collider has not yet found any evidence for supersymmetric particles.

Have primordial black holes (PBHs) as the explanation for dark matter been given short shrift? The recent detections by the LIGO instruments of two gravitational wave events, well explained by black hole mergers, have sparked new interest. A previous blog entry addressed this possibility:

https://darkmatterdarkenergy.com/2016/06/17/primordial-black-holes-as-dark-matter/.

The black holes observed in these events have masses in a range from about 8 to about 36 solar masses, and they could well be primordial.

There are a number of mechanisms to create PBHs in the early universe, prior to the very first second and the beginning of Big Bang nucleosynthesis. At any era, if there is a total mass M confined within a radius R, such that

2*GM/R > c^2 ,

then a black hole will form. The above equation defines the Schwarzschild limit (G is the gravitational constant and c the speed of light). A PBH doesn’t even have to be formed from matter whether ordinary or exotic; if the energy and radiation density is high enough in a region, it can also result in collapse to a black hole.

 cosmicstrings.jpg

Cosmic Strings

Image credit: David Daverio, Université de Genève, CSCS supercomputer simulation data

The mechanisms for PBH creation include:

  1. Cosmic string loops – If string theory is correct the very early universe had very long strings and many short loops of strings. These topological defects intersect and form black holes due to the very high density at their intersection points. The black holes could have a broad range of masses.
  2. Bubble collisions from symmetry breaking – As the very early universe expanded and cooled, the strong force, weak force and electromagnetic force separated out. Bubbles would nucleate at the time of symmetry breaking as the phase of the universe changed, just as bubbles form in water as it boils to the surface. Collisions of bubbles could lead to high density regions and black hole formation. Symmetry breaking at the GUT scale (for the strong force separation) would yield BHs of mass around 100 kilograms. Symmetry breaking of the weak force from the electromagnetic force would yield BHs with a mass of around our Moon’s mass ~ 10^25 kilograms.
  3. Density perturbations – These would be a natural result of the mechanisms in #1 and #2, in any case. When observing the cosmic microwave background radiation, which dates from a time when the universe was only 380,000 years old, we see density perturbations at various scales, with amplitudes of only a few parts in a million. Nevertheless these serve as the seeds for the formation of the first galaxies when the universe was only a few hundred million years old. Some perturbations could be large enough on smaller distance scales to form PBHs ranging from above a solar mass to as high as 100,000 solar masses.

For a PBH to be an effective dark matter contributor, it must have a lifetime longer than the age of the universe. BHs radiate due to Hawking radiation, and thus have finite lifetimes. For stellar mass BHs, the lifetimes are incredibly long, but for smaller BHs the lifetimes are much shorter since the lifetime is proportional to the cube of the BH mass. Thus a minimum mass for PBHs surviving to the present epoch is around a trillion kilograms (a billion tons).

Carr et al. (paper referenced below) summarized the constraints on what fraction of the matter content of the universe could be in the form of black holes. Traditional black holes, of several solar masses, created by stellar collapse and detectable due to their accretion disks, do not provide enough matter density. Neither do supermassive black holes of over a million solar masses found at the centers of most galaxies. PBHs may be important in seeding the formation of the supermassive black holes, however.

Limits on the PBH abundance in our galaxy and its halo (which is primarily composed of dark matter) are obtained from:

  1. Cosmic microwave background measurements
  2. Microlensing measurements (gravitational lensing)
  3. Gamma-ray background limits
  4. Neutral hydrogen clouds in the early universe
  5. Wide binaries (disruption limits)

Microlensing surveys such as MACHO and EROS have searched for objects in our galactic halo that act as gravitational lenses for light originating from background stars in the Magellanic Clouds or the Andromeda galaxy. The galactic halo is composed primarily of dark matter.

A couple of dozen of objects with less than a solar mass have been detected.  Based on these surveys the fraction of dark matter which can be PBHs with less than a solar mass is 10% at most. The constraints from 1 solar mass up to 30 solar masses are weaker, and a PBH explanation for most of the galactic halo mass remains possible.

Similar studies conducted toward distant quasars and compact radio sources address the constraint in the supermassive black hole domain, apparently ruling out an explanation due to PBHs with from 1 million to 100 million solar masses.

Lyman-alpha clouds are neutral hydrogen clouds (Lyman-alpha is an important ultraviolet absorption line for hydrogen) that are found in the early universe at redshifts above 4. Simulations of the effect of PBH number density fluctuations on the distribution of Lyman-alpha clouds appear to limit the PBH contribution to dark matter for a characteristic PBH mass above 10,000 solar masses.

Distortions in the cosmic microwave background are expected if PBHs above 10 solar masses contributed substantially to the dark matter component. However these limits assume that PBH masses do not change. Merging and accretion events after the recombination era, when the cosmic microwave background was emitted, can allow a spectrum of PBH masses that were initially less than a solar mass before recombination evolve to one dominated by PBHs of tens, hundreds and thousands of solar masses today. This could be a way around some of the limits that appear to be placed by the cosmic microwave background temperature fluctuations.

Thus it appears could be a window in the region 30 to several thousand solar masses for PBHs as an explanation of cold dark matter.

As the Advanced LIGO gravitational wave detectors come on line, we expect many more black hole merger discoveries that will help to elucidate the nature of primordial black holes and the possibility that they contribute substantially to the dark matter component of our Milky Way galaxy and the universe.

References

B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, 2010 arxiv.org/pdf/0912.5297v2 “New cosmological constraints on primordial black holes”

S. Cleese and J. Garcia-Bellido, 2015 arxiv.org/pdf/1501.07565v1.pdf “Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the Seeds of Galaxies”

P. Frampton, 2015 arxiv.org/pdf/1511.08801.pdf “The Primordial Black Hole Mass Range”

P. Frampton, 2016 arxiv.org/pdf/1510.00400v7.pdf “Searching for Dark Matter Constituents with Many Solar Masses”

Green, A., 2011 https://www.mpifr-bonn.mpg.de/1360865/3rd_WG_Green.pdf “Primordial Black Hole Formation”

P. Pani, and A. Loeb, 2014 http://xxx.lanl.gov/pdf/1401.3025v1.pdf “Exclusion of the remaining mass window for primordial black holes as the dominant constituent of dark matter”

S. Perrenod, 2016 https://darkmatterdarkenergy.com/2016/06/17/primordial-black-holes-as-dark-matter/

NEW BOOK just released:

S. Perrenod, 2016, 72 Beautiful Galaxies (especially designed for iPad, iOS; ages 12 and up)

Andromeda_galaxy_Galex


Primordial Black Holes as Dark Matter?

LIGO Gravitational Wave Detection Postulated to be Due to Primordial Black Holes

Dark matter remains elusive, with overwhelming evidence for its gravitational effects, but no confirmed direct detection of exotic dark matter particles.

Another possibility which is being re-examined as an explanation for dark matter is that of black holes that formed in the very early universe, which in principle could be of very small mass, or quite large mass. And they may have initially formed at smaller masses and then aggregated gravitationally to form larger black holes.

Recently gravitational waves were discovered for the first time, by both of the LIGO instruments, located in Louisiana and in Washington State. The gravitational wave signal (GW150914) indicates that the source was a pair of black holes, of about 29 and 36 solar masses respectively, spiraling together into a single black hole of about 62 solar masses. A full 3 solar masses’ worth of gravitational energy was radiated way in the merger. Breaking news: LIGO has just this month announced gravitational waves from a second black hole binary of 22 solar masses total. One solar mass of energy was radiated away in the merger.

massrangescompactobjects.jpg

Image credit: NASA/JPL, http://www.nasa.gov/jpl/nustar/pia18842

Most of the black holes that we detect (indirectly, from their accretion disks) are stellar-sized in the range of 10 to 100 solar masses and are believed to be the evolutionary endpoints of massive stars. We detect them when they are surrounded by accretion disks of hot luminous matter outside of their event horizons. The other main category of black holes exceeds a million solar masses and can even be more than a billion solar masses, and are known as supermassive black holes.

It is possible that some of the stellar-sized and even elusive intermediate black holes were formed in the Big Bang. Such black holes are referred to as primordial black holes. There are a variety of theoretical formation mechanisms, such as cosmic strings whose loops in all dimensions are contained within the event horizon radius (Schwarzschild radius). In general such primordial black holes (PBHs) would be distributed in a galaxy’s halo, would interact rarely and not have accretion disks and thus would not be detectable due to electromagnetic radiation. That is, they would behave as dark matter.

Dr. Simon Bird and coauthors have recently proposed that the gravitational wave event (GW150914) could be due to two primordial black holes encountering each other in a galactic halo, radiate enough of their kinetic energy away in gravity waves to become bound to each other and inspiral to a single black hole with a final burst of gravitational radiation. The frequency of events is estimated to be of order a few per year per cubic Gigaparsec (a Gigaparsec is 3.26 billion light years), if the dark matter abundance is dominated by PBHs.

While low-mass PBHs have been ruled out for the most part, except of a window around one one-hundred millionth of a solar mass, the authors suggest a window also remains for PBHs in the range from 20 to 100 solar masses.

Dr. A. Kashlinsky has gone further to suggest that the cosmic infrared background (CIB) of unresolved 2 to 5 micron near-infrared sources is due to PBHs. In this case the PBHs would be the dominant dark matter component in galactic halos and would mediate early star and galaxy formation. Furthermore there is an unresolved soft cosmic X-ray background which appears to be correlated with the CIB.

This would be a trifecta, with PBHs explaining much or most of the dark matter, the CIB and the soft-X-Ray CXB! But at this point it’s all rather speculative.

The LIGO instruments are now upgraded to Advanced LIGO and as more gravitational wave events are detected due to black holes, we can gain further insight into this possible explanation for dark matter, in whole or in part. Improved satellite born experiments to further resolve the CIB and CXB will also help to explore this possibility of PBHs as a major component to dark matter.

References:

S. Bird et al. arXiv:1603.00464v2 “Did LIGO detect Dark Matter”

A. Kashlinksy arXiv:1605.04023v1 “LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies”

http://www.space.com/26857-medium-size-black-hole-discovery-m82.html – “It’s Confirmed! Black Holes Do Come in Medium Sizes”

Video (artist’s representation) of inspiral and merger of binary black hole GW151226 (second gravitational wave detection): https://youtu.be/KwbXxzgAObU

NEW BOOK just released:

S. Perrenod, 2016, 72 Beautiful Galaxies (especially designed for iPad, iOS; ages 12 and up)

Andromeda_galaxy_Galex


Eternal Inflation and the Multiverse

miniuniverses

Figure 1 from Andrei Linde’s paper “Brief History of the Multiverse”. Each blob represents a pocket universe, occupying a different region of space, and being born at a different time during eternal inflation. A particular pocket universe may be connected to its parent by some sort of bridge, or that connection may have broken or decayed. Different pocket universes will have different physics.

“Inflationary cosmology therefore suggests that, even though the observed universe is incredibly large, it is only an infinitesimal fraction of the entire universe” states Alan Guth, the original father of the inflationary Big Bang, in his article from 2007, “Eternal inflation and its implications”.

Inflation is the very brief – yet extremely significant – period in our own universe’s history, perhaps of duration only a billionth of a trillionth of a trillionth of a second. During the inflation event, a very submicroscopic bubble of energy and space expanded tremendously, doubling in scale perhaps 100 times or more in each of the 3 spatial dimensions. That’s an increase in volume of around 90 factors of 10! This inflationary epoch drove the universe to become macroscopic in scale, and also to become highly homogeneous and topologically flat at large scales.

The inflationary Big Bang models solved a number of outstanding problems in cosmology, such as the horizon problem and the flatness problem. Basically at large scales we see a homogeneous and topologically flat universe in all directions. Without inflation, parts of the universe seen on opposite ends of the sky would never have been casually connected. However, with the inflation models, those regions were originally within each others’ casually connected ‘light cones’, prior to the inflation phase, before it pushed them out to much larger physical scale, at which point they become highly separated.

Andrei Linde is another one of the fathers of inflationary Big Bang theory, and the originator of the chaotic inflation models. Chaotic inflation, and another leading model, ‘new’ inflation, both appear to result in eternal inflation; this gives rise to the multiverse scenario. That is, inflation keeps going in most of space, while multiple universes form and separate from the inflation process.

The multiverse scenario states that our universe is only one of a very large number of universes, and in such a case, our particular universe may be referred to as a ‘mini-universe’ or ‘pocket universe’. Of course our universe is already enormously large, it’s just that the multiverse is giaganormously larger than that. With eternal inflation the multiverse keeps inflating in other regions, portions of which will later settle out into other ‘pocket universes’.

Linde has recently published a summary “A Brief History of the Multiverse” which describes the developments in inflationary Big Bang theory and models for the multiverse since 1982. I encourage those who are interested in multiverses to read his paper.

With this eternal inflation our universe was (most likely) not the first, it was just one of many and inflation has been going on for a very long time. Inflation would continue forever into the future. New mini-universes would continue to be spawned and settle out from the overall inflation. It appears that eternal inflation is not eternal into the past, however, just into the future (see Guth paper referenced below).

Each of these mini-universes could have different values of the fundamental physical parameters. This ties into string theory models which admit of a very large number of possibilities for physical parameters.

Some sets of these parameters are favorable to life, but many (most) would not be. In order to get life as we know it we need carbon and other heavy elements, formed in stars (and not during the Big Bang nucleosynthesis), and we need a long-lived mini-universe. Other mini-universes might have different values of dark matter and dark energy than in our own universe. This could lead to very short lifetimes with no chance to form galaxies and stars.

Sidebar: These models are motivated by string theory and inflationary cosmology. It makes more sense in this context to think of ‘mini-universes’ rather than ‘parallel universes’ that often get popularized in discussions of quantum physics e.g. the Many Worlds discussions. Sorry to break the news to you, but there is not another you in each of these other mini-universes, since, even though they are endless in number, they all have different physical conditions and different histories.

References

Guth, Alan 2007. “Eternal Inflation and its Implications” http://arxiv.org/abs/hep-th/0702178

Linde, Andrei 2015. “Brief History of the Multiverse” http://arxiv.org/pdf/1512.01203.pdf


Planck 2015 Constraints on Dark Energy and Inflation

The European Space Agency’s Planck satellite gathered data for over 4 years, and a series of 28 papers releasing the results and evaluating constraints on cosmological models have been recently released. In general, the Planck mission’s complete results confirm the canonical cosmological model, known as Lambda Cold Dark Matter, or ΛCDM. In approximate percentage terms the Planck 2015 results indicate 69% dark energy, 26% dark matter, and 5% ordinary matter as the mass-energy components of the universe (see this earlier blog:

https://darkmatterdarkenergy.com/2015/03/07/planck-mission-full-results-confirm-canonical-cosmology-model/)

Dark Energy

We know that dark energy is the dominant force in the universe, comprising 69% of the total energy content. And it exerts a negative pressure causing the expansion to continuously speed up. The universe is not only expanding, but the expansion is even accelerating! What dark energy is we do not know, but the simplest explanation is that it is the energy of empty space, of the vacuum. Significant departures from this simple model are not supported by observations.

The dark energy equation of state is the relation between the pressure exerted by dark energy and its energy density. Planck satellite measurements are able to constrain the dark energy equation of state significantly. Consistent with earlier measurements of this parameter, which is usually denoted as w, the Planck Consortium has determined that w = -1 to within 4 or 5 percent (95% confidence).

According to the Planck Consortium, “By combining the Planck TT+lowP+lensing data with other astrophysical data, including the JLA supernovae, the equation of state for dark energy is constrained to w = −1.006 ± 0.045 and is therefore compatible with a cosmological constant, assumed in the base ΛCDM cosmology.”

A value of -1 for w corresponds to a simple Cosmological constant model with a single parameter Λ  that is the present-day energy density of empty space, the vacuum. The Λ value measured to be 0.69 is normalized to the critical mass-energy density. Since the vacuum is permeated by various fields, its energy density is non-zero. (The critical mass-energy density is that which results in a topologically flat space-time for the universe; it is the equivalent of 5.2 proton masses per cubic meter.)

Such a model has a negative pressure, which leads to the accelerated expansion that has been observed for the universe; this acceleration was first discovered in 1998 by two teams using certain supernova as standard candle distance indicators, and measuring their luminosity as a function of redshift distance.

Modified gravity

The phrase modified gravity refers to models that depart from general relativity. To date, general relativity has passed every test thrown at it, on scales from the Earth to the universe as a whole. The Planck Consortium has also explored a number of modified gravity models with extensions to general relativity. They are able to tighten the restrictions on such models, and find that overall there is no need for modifications to general relativity to explain the data from the Planck satellite.

Primordial density fluctuations

The Planck data are consistent with a model of primordial density fluctuations that is close to, but not precisely, scale invariant. These are the fluctuations which gave rise to overdensities in dark matter and ordinary matter that eventually collapsed to form galaxies and the observed large scale structure of the universe.

The concept is that the spectrum of density fluctuations is a simple power law of the form

P(k) ∝ k**(ns−1),

where k is the wave number (the inverse of the wavelength scale). The Planck observations are well fit by such a power law assumption. The measured spectral index of the perturbations has a slight tilt away from 1, with the existence of the tilt being valid to more than 5 standard deviations of accuracy.

ns = 0.9677 ± 0.0060

The existence and amount of this tilt in the spectral index has implications for inflationary models.

Inflation

The Planck Consortium authors have evaluated a wide range of potential inflationary models against the data products, including the following categories:

  • Power law
  • Hilltop
  • Natural
  • D-brane
  • Exponential
  • Spontaneously broken supersymmetry
  • Alpha attractors
  • Non-minimally coupled

Figure 12 from Constraints on InflationFigure 12 from Planck 2015 results XX Constraints on Inflation. The Planck 2015 data constraints are shown with the red and blue contours. Steeper models with  V ~ φ³ or V ~ φ² appear ruled out, whereas R² inflation looks quite attractive.

Their results appear to rule out some of these, although many models remain consistent with the data. Power law models with indices greater or equal to 2 appear to be ruled out. Simple slow roll models such as R² inflation, which is actually the first inflationary model proposed 35 years ago, appears more favored than others. Brane inflation and exponential inflation are also good fits to the data. Again, many other models still remain statistically consistent with the data.

Simple models with a few parameters characterizing the inflation suffice:

“Firstly, under the assumption that the inflaton* potential is smooth over the observable range, we showed that the simplest parametric forms (involving only three free parameters including the amplitude V (φ∗ ), no deviation from slow roll, and nearly power-law primordial spectra) are sufficient to explain the data. No high-order derivatives or deviations from slow roll are required.”

* The inflaton is the name cosmologists give to the inflation field

“Among the models considered using this approach, the R2 inflationary model proposed by Starobinsky (1980) is the most preferred. Due to its high tensor- to-scalar ratio, the quadratic model is now strongly disfavoured with respect to R² inflation for Planck TT+lowP in combination with BAO data. By combining with the BKP likelihood, this trend is confirmed, and natural inflation is also disfavoured.”

Isocurvature and tensor components

They also evaluate whether the cosmological perturbations are purely adiabatic, or include an additional isocurvature component as well. They find that an isocurvature component would be small, less than 2% of the overall perturbation strength. A single scalar inflaton field with adiabatic perturbations is sufficient to explain the Planck data.

They find that the tensor-to-scalar ratio is less than 9%, which again rules out or constrains certain models of inflation.

Summary

The simplest LambdaCDM model continues to be quite robust, with the dark energy taking the form of a simple cosmological constant. It’s interesting that one of the oldest and simplest models for inflation, characterized by a power law relating the potential to the inflaton amplitude, and dating from 35 years ago, is favored by the latest Planck results. A value for the power law index of less than 2 is favored. All things being equal, Occam’s razor should lead us to prefer this sort of simple model for the universe’s early history. Models with slow-roll evolution throughout the inflationary epoch appear to be sufficient.

The universe started simply, but has become highly structured and complex through various evolutionary processes.

References

Planck Consortium 2015 papers are at http://www.cosmos.esa.int/web/planck/publications – This site links to the 28 papers for the 2015 results, as well as earlier publications. Especially relevant are these – XIII Cosmological parameters, XIV Dark energy and modified gravity, and XX Constraints on inflation.


BICEP2 Apparently Detects Quantum Nature of Gravity and Supports Inflationary Big Bang

Can a single experiment do all of the following?

  1. Provide significant confirmation of the inflationary version of the Big Bang model (and help constrain which model of inflation is correct)
  2. Confirm the existence of gravitational waves
  3. Support the quantum nature of gravity (at very high energies)
  4. Provide the first direct insight into the highest energy levels imagined by physicists – 10^16 GeV (10,000 trillion GeV) – 12 orders of magnitude beyond the LHC

Apparently it can! BICEP2 is a radio telescope experiment located at the South Pole, taking advantage of the very cold, dry air at that remote location for greater sensitivity. It is focused on measuring polarization of the cosmic microwave background radiation that is a remnant of the hot Big Bang of the early universe. (BICEP is an abbreviation of Background Imaging of Cosmic Extragalactic Polarization; this is the second version of the experiment).

The results announced by the BICEP2 team on March 17 at the Harvard-Smithsonian Center for Astrophysics, if they have been correctly interpreted, are the most important in cosmology in the 21st century to date. They are of such enormous significance that a Nobel Prize in Physics is highly likely, if the results and interpretation are confirmed.

We infer from a number of previous observations that there was likely an inflationary period very early on in the universes’s history. We are talking very, very, early – in the first billionth of a trillionth of a trillionth of a second. See this earlier post of mine here: https://darkmatterdarkenergy.com/2011/03/22/inflation/ This new result from BICEP2 is very supportive of inflationary Big Bang models, and that includes very simple models for inflation.

What is the observation? It is B-mode polarization in the cosmic microwave background radiation. The cosmic microwave background (CMB) is the thermal radiation left over from a time when the universe became transparent, at age 380,000 years, almost 14 billion years ago. There are two polarization modes for alignment of CMB radiation, the E-mode and the B-mode. The B-mode measures the amount of “curliness” in the alignment of CMB microwave photons (as you can easily see in the image below).

There are two known causes of B-mode polarization for the CMB. The first, also detected by the BICEP2 experiment, is due to intervening clusters of galaxies along the line of sight. These clusters bend the light paths due to their immense masses, in accordance with general relativity. These effects are seen at smaller spatial scales. At larger spatial scales, we have the more significant effect, whereby the gravitational waves generated during the inflation epoch imprint the polarization.

 

Image

 

You can easily see the curly B-mode polarization with a quick glance at BICEP2’s results. (bicepkeck.org)

 

What is being seen in today’s CMB is due to this second and more profound cause, which is nothing less than quantum fluctuations in space-time in the very, very early universe revealing themselves due to the gravitational waves that they generated. And these gravitational waves in turn caused a small curling effect on the cosmic microwave background, until the time of decoupling of radiation and matter. This is seen in the image at angular scales of a few degrees.

At age 380,000 years the universe became transparent to the CMB radiation and it traveled for another 13.8 billion years and underwent a redshift by a factor of 1500 as the universe expanded. So what was optical radiation at that time, becomes microwave radiation today, with a characteristic temperature of 2.7 Kelvins (degrees above absolute zero), while still retaining the curly pattern seen by BICEP2.

This is the first observation that provides some direct insight into extremely high energy scales within the context of a single experiment. We are talking here of approximately a trillion times higher energy than the Large Hadron Collider, the world’s most powerful particle accelerator, where the Higgs boson was discovered.

The BICEP2 results are a single experiment that for the first time apparently ties quantum mechanics and gravity together. It supports the quantum nature of gravity, which occurs at very high energy scales. The Planck scale at which space-time would be quantized corresponds to an energy level of 10^18 or 10^19 GeV (ten million trillion GeV), and inflation in many models begins when the universe has an energy level somewhat lower, at 10^16 GeV (ten thousand trillion GeV, where 1 GeV is a little more than the rest mass-energy of a proton).

And take a look at this interview of Sean Carroll by PBS’s Gwen Ifill to get some more context around this (hopefully correct!) universe-expanding discovery. Other astronomers are already racing to confirm it.

 

References:

http://www.cfa.harvard.edu/CMB/bicep2/ – BICEP2 web site at Harvard-Smithsonian Center for Astrophysics

http://www.theguardian.com/science/2014/mar/17/bicep2-how-hot-big-bang-science-dark-energy

http://www.scientificamerican.com/article/gravity-waves-cmb-b-mode-polarization/


More Dark Matter: First Planck Results

Image

Credit: European Space Agency and Planck Collaboration 

Map of CMB temperature fluctuations with slightly colder areas in blue, and hotter areas in red.

 

The first results from the European Space Agency’s Planck satellite have provided excellent confirmation for the Lambda-CDM (Dark Energy and Cold Dark Matter) model. The results also indicate somewhat more dark matter, and somewhat less dark energy, than previously thought. These are the most sensitive and accurate measurements of fluctuations in the cosmic microwave background (CMB) radiation to date.

Results from Planck’s first 1 year and 3 months of observations were released in March, 2013. The new proportions for mass-energy density in the current universe are:

  • Ordinary matter 5%
  • Dark matter 27%
  • Dark energy 68%

Planck_cosmic_recipe_node_full_image

Credit: European Space Agency and Planck Collaboration

The prior best estimate for dark matter primarily from the NASA WMAP satellite observations, was 23%. So the dark matter fraction is higher, and the dark energy fraction correspondingly lower, than WMAP measurements had indicated.

Dark energy still dominates by a very considerable degree, although somewhat less than had been thought prior to the Planck results. This dark energy – Lambda – drives the universe’s expansion to speed up, which is known as the runaway universe. At one time dark matter dominated, but for the last 5 billion years, dark energy has been dominant, and it grows in importance as the universe continues to expand.

The Planck results also added a little bit to the age of the universe, which is measured to be about 13.8 billion years, about 3 times the age of the earth. The CMB radiation itself, was emitted when the universe was only 380,000 years old. It was originally in the infrared and optical portions of the spectrum, but has been massively red-shifted, by around 1500 times, due to the expansion of the universe.

There are many other science results from the Planck Science team in cosmology and astrophysics. These include initial support indicated for relatively simple models of “slow roll” inflation in the extremely early universe. You can find details at the ESA web sites referenced below, and in the large collection of papers from the 47th ESlab Conference link.

References:

http://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_an_almost_perfect_Universe – news article at ESA site

https://darkmatterdarkenergy.com/2011/07/04/dark-energy-drives-a-runaway-universe/ – runaway universe blog

http://www.rssd.esa.int/index.php?project=planck – Planck Science Team site

http://www.sciops.esa.int/index.php?project=PLANCK&page=47_eslab – 47th ESlab Conference presentations on Planck science results


Why the Higgs Boson is not Dark Matter

The Higgs boson is considered a necessary part of the Standard Model of particle physics. In the Standard Model there are 3 main forces of nature: the electromagnetic force, the weak nuclear force, and the strong nuclear force. The Standard Model does not address gravity and we do not yet have a proven theory for the unification of gravity with the other 3 forces.

On July 4th CERN, the European particle physics lab near Geneva, announced that two experiments using the Large Hadron Collider accelerator, ATLAS and CMS, have both amassed strong statistical evidence (around 5 sigma) for a new particle. This new particle has a mass of about 126 GeV* and “smells” very much like it is the long sought after, and elusive, Higgs boson. The prediction of the Higgs dates from 1964. For comparison, the proton mass is about 0.94 GeV, so the Higgs is around 134 times more massive. Further work is necessary to determine all of its properties, but at this point it looks as if the new particle decays into other particles in the expected manner. It is these decay products that are actually detected.

This decades-long search has proceeded in fits and starts, principally at CERN in Europe and Fermilab in the U.S., with different accelerators and detectors. Over time the experiments were able to exclude possible masses for the Higgs, since the rate of creation of different decay products varies for different putative masses. By the end of 2011 it looked like there was a preliminary signal, not yet of sufficient statistical strength, but that the mass would have to be in the range of about 115 to 130 GeV.

Image

The CMS detector at the Large Hadron Collider. Credit: Mark Thiessen/National Geographic Society/Corbis

One of my professors, Steven Weinberg, won the Nobel Prize in Physics years ago for his work on unifying the electromagnetic force and the weak force. While the Standard Model and the body of work in particle physics provides a theoretical underpinning for all of the particles which we observe, and their quantum properties, and describes a unification of the strong force (which holds together the quarks inside a proton or neutron) with these other two forces, it also requires an additional mechanism to explain why most particles have non-zero masses.

The Higgs mechanism is the favored explanation, and it predicts a particle as the mediator to provide masses to other particles. The Higgs mechanism is theorized as an all-pervasive Higgs field, which slows down particles as they move through it. As you swim through water you feel a drag that slows you down. A fish with a very hydrodynamic design will feel less drag. In the particle world, more massive ones slow down more than the lighter ones, since they interact more strongly with the Higgs field.

The particle corresponding to this mechanism is known as the Higgs boson. Particles can have quantum spin that is a multiple of ½ or an integer multiple. Bosons have integer multiple spins. Actually the spin of the Higgs boson is zero. All of the force mediator particles such as the photon (spin = 1), which mediates electromagnetism, are bosons.

The Large Hadron Collider is in some sense recreating the conditions of the very early universe by smashing particles together at 7000 GeV, or 7 TeV. The Higgs originally would have been created in Nature in the very early part of the Big Bang, around the first one-trillionth of a second. The appearance of the Higgs broke the unification, or symmetry, between the electromagnetic and weak forces that Steven Weinberg demonstrated are one at very high energies. And the Higgs gave mass to particles.

Without the Higgs mechanism, all particles would be massless, and thus travelling at the speed of light, and structure in the universe – stars, planets, galaxies, human beings, would not be possible. Even the existence of the proton itself requires that quarks have mass, although most of the proton mass comes from the energy of the gluons (strong force mediation particle) and ‘virtual’ quark-antiquark pairs found inside it.

The Higgs boson cannot be the explanation for dark matter for a very simple reason. Dark matter must be stable with a very long lifetime, persisting over the universe’s present age of 14 billion years. It mostly sits in space doing nothing except providing additional gravitational interaction with ordinary matter. The favored candidate for dark matter is the least massive supersymmetric particle; being the least massive, it would have nothing to decay into. Supersymmetry is a theoretical extension beyond the Standard Model. No supersymmetric particles are detected as of yet, but the theory has a lot of support and has the benefit of stabilizing the mass of the Higgs itself.

The Higgs boson, on the other hand, decays very rapidly. There are various decay channels, including into quarks, W/Z bosons, leptons or photons, producing these in pairs (two Zs, two top quarks etc.). Sometimes even four particles are produced from a single Higgs decay. It is these decay products that are actually detected in the Large Hadron Collider at CERN.

There are a few experiments that are claiming to have directly detected dark matter. The favored mass range from the COGENT and DAMA/LIBRA experiments is around 10 GeV for dark matter, much more than a proton, but less than 10% of the Higgs’ mass. Now that the Higgs appears to have been found, work will proceed on confirming and elucidating its properties. And the next great hunt for particle physics may be the direct detection of dark matter particles and the beginning of a determination if supersymmetry is real.

* GeV = Giga-electronVolt or 1 billion electron Volts. 1 TeV (Tera-electronVolt) = 1000 GeV

References:

http://en.wikipedia.org/wiki/Higgs_boson

http://en.wikipedia.org/wiki/Standard_Model

http://en.wikipedia.org/wiki/Large_Hadron_Collider

http://www.pbs.org/wgbh/nova/physics/blog/2012/07/higgs-fireworks-on-july-4/

http://www.youtube.com/watch?v=ktEpSvzPROc – Don Lincoln of Fermilab on how we search for the Higgs at particle accelerators

http://www.youtube.com/watch?v=r4-wVzjnQRI&feature=related – BBC documentary